Простая схема проверки всех транзисторов. Универсальный прибор для проверки радиоэлементов из стрелочного тестера. Проверка биполярных транзисторов

Транзистор – это очень важный элемент большинства радиосхем. Тем, кто решил заняться радиомоделированием, необходимо в первую очередь знать, как их проверять и какие устройства при этом использовать.

В биполярном транзисторе имеется в наличии 2 PN перехода. Выводы из него называют эмиттером, коллектором и базой. Эмиттер и коллектор – это элементы, размещенные по краям, а база находится между ними, посередине. Если рассматривать классическую схему движения тока, то сначала он входит в эмиттер, а затем накапливается в коллекторе. База необходима для того, чтобы регулировать ток в коллекторе.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление , для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход , для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы , в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки .

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку , необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор , то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером , необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Как проверить транзистор, не выпаивая из схемы


Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А - Ж.

Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.

Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.

Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.

Последовательность действий при проверке транзисторов одним из таких приборов, следующая:

  1. Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
  2. Далее проверяется лампа Л1 на размыкание щупов. Л ампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток .
  3. После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
  4. Переключатель устанавливается в положение PNP или NPN, включается питание.

Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);

В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.

Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.

Для проверки нужно последовательно выполнить такие операции:

  1. Подключить к наиболее вероятному выходу базы один из щупов.
  2. Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
  3. Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
  4. Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.

Основные причины неисправности


Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:

  1. Обрыв перехода между составными частями.
  2. Пробой одного из переходов.
  3. Пробой участка коллектора или эмиттера.
  4. Утечка мощности под напряжением цепи.
  5. Видимое повреждение выводов.

Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.

  1. Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
  2. Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
  3. Проводя проверку , следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.

В данной статье будет представлена, на мой взгляд, самая простейшая, но не менее эффективная схема Полевых Мышей (полевых транзисторов). Эта схема я думаю, по праву займет одно из своих лидирующих месть в интернете, по простоте и надежности сборки. Так как ни мотать, ни сгорать тут просто нечему… Количество деталей минимум. Причем схема не критична к номиналам деталей… И может быть собрана практически из хлама, при этом не теряя свою работоспособность…

Многие скажут, зачем какой то- пробник для транзисторов? Если все можно проверить обычным мультимитром… И в какой то степени они будут правы… Что бы собрать пробник надо минимум иметь паяльник и тестер… Для проверке все тех же диодов и резисторов. Соответственно,что если есть тестер то пробник не нужен. И да и нет. Тестером (мультимитром) конечно можно проверить полевой транзистор (полевую мышь) на работоспособность… Но мне кажется это сделать намного сложнее чем проверить ту же полевую мышь пробником… Не буду объяснять в данной статье как работает полевая мышь (полевой транзистор). Так, как для специалиста это все давно известно, и не интересно, а для новичка всё сложно и замудрено. Так что было решено обойтись без занудных объяснений принципа работы полевой мыши (полевого транзистора).

Итак, схема пробника, и как им проверить полевую мышь (полевой транзистор) на живучесть.

Собираем данную схему, хоть на печатной плате (печатка прилагается в конце статьи). Хоть навесным монтажом. Номиналы резисторов могут отличатся примерно на 25% в любую сторону.

Кнопка любая без фиксации.

Светодиод можно поставить хоть биполярный, двухцветный, хоть два встречно параллельных. Либо даже просто один. Если вы планируете проверять транзисторы только одной структуры.. Только N канального типа или только P канального типа.

Схема собрана для полевых мышей N канального типа. При проверке транзисторов P канального типа придется поменять полярность питания схемы. Поэтому в схему был добавлен еще один встречный светодиод, параллельно первому.. В случае если понадобится проверить полевую мышь (полевой транзистор) P канального типа.

Многие наверно заметят сразу, что в схеме отсутствует переключатель полярности питания.

Это сделано по нескольким причинам.

1 Такого подходящего переключателя не оказалось в наличии.

2 Просто, чтобы не запутаться в каком положении должен находиться переключатель при проверки соответствующего транзистора. Мне чаще попадают транзисторы N канальные, чем P канальные. Поэтому при необходимости мне не сложно просто поменять проводки местами. Для проверки P канальных полевых мышей (полевых транзисторов).

3 Просто для упрощения и удешевления схемы.

Как схема работает? Как проверять полевых мышей на живучесть?

Собираем схему и подключаем транзистор (полевую мышу) К соответствующим клеммам схемы (сток, исток, затвор).

Ничего не нажимая, подключаем питание. Если светодиод не горит уже хорошо.

Если же при правильном подключении транзистора к пробнику,подаче питания и НЕ нажатой кнопки светодиод загорится… Значит транзистор пробит.

Соответственно если при нажатой кнопке светодиод НЕ горит. Значит транзистор в обрыве.

Вот и вся хитрость. Всё гениально просто. Удачи.

P/S. Почему в статье полевой транзистор, называю полевой мышью? Всё очень просто. Вы когда ни будь встречали в поле транзисторы? Ну так.. Просто. Они там живут, или растут? Думаю, что нет. А вот полевые мыши есть… И тут они наиболее уместны, чем полевые транзисторы.

И почему вас удивляет сравнение полевого транзистора с полевой мышью? Ведь есть же, например сайт радиокот или радиоскот. И многие другие сайты с подобными названиями.. Которые на прямую никакого отношения к живности не имеют… Так что.

Так же считаю, что вполне можно назвать биполярный транзистор, например полярным белым медведем….

И еще хочу выразить огромную благодарность автору этой схемы пробника В. Гончарук.

Вероятно нет такого радиолюбителя который бы не исповедовал культ радиотехнического лабораторного оборудования. В первую очередь это , приставки к ним и пробники, которые в большинстве являются изготовленными самостоятельно. А так как измерительных приборов много не бывает и это аксиома, как-то собрал небольшой по размерам и с весьма несложной схемой испытатель транзисторов и диодов. Давно уже есть не плохой мультиметр, а самодельным тестером, во многих случаях, продолжаю пользоваться по прежнему.

Схема прибора

Конструктор пробника состоит всего из 7 электронных компонентов + печатная плата. Собирается быстро и работать начинает абсолютно без всякой настройки.

Схема собрана на микросхеме К155ЛН1 содержащей шесть инверторов.При правильном подключении к ней выводов исправного транзистора зажигается один из светодиодов (HL1 при структуре N-P-N и HL2 при P-N-P). Если неисправен:

  1. пробит, вспыхивают оба светодиода
  2. имеет внутренний обрыв, оба не зажигаются

Проверяемые диоды подключаются к выводам «К» и «Э». В зависимости от полярности подключения загораться будут HL1 или HL2.

Компонентов схемы совсем не много но лучше изготовить печатную плату, хлопотно паять провода к ножкам микросхемы напрямую.

И постарайтесь не забыть поставить под микросхему панельку.

Пользоваться пробником можно и без установки его в корпус, но если затратить ещё немного время на его изготовление, то будете иметь полноценный, мобильный пробник, который уже можно взять с собой (например на радиорынок). Корпус на фото изготовлен из пластмассового корпуса квадратной батарейки, которая уже своё отработала. Всего-то делов было удалить прежнее содержимое и отпилить излишки, просверлить отверстия под светодиоды и приклеить планку с разъёмами для подключения проверяемых транзисторов. На разъёмы не лишним будет «одеть» цвета опознавания. Кнопка включения обязательна. Блок питания это привёрнутый несколькими винтами к корпусу батарейный отсек формата ААА.

Крепёжные винты, небольшого размера, удобно пропустить через плюсовые контакты и привернуть с обязательным использованием гаек.

Испытатель в полной готовности. Оптимальным будет использование аккумуляторов ААА, четыре штуки по 1,2 вольта дадут лучший вариант питаемого напряжения в 4,8 вольта.

Такие полезные радиолюбительские пробники удобны тем, что имеют простую конструкцию, содержат минимум элементов и при этом универсальны – можно быстро проверить работоспособность практически любых широко применяемых транзисторов (кроме полевых) и звуковых или ВЧ-каскадов.

Транзисторные пробники

Ниже приведены две схемы транзисторных пробников. Они представляют собой простейшие автогенераторы, где в качестве активного элемента используется проверяемый транзистор. Особенностью обеих схем является то, что с их помощью можно проверять транзисторы не выпаивая их из схемы. Также можно таким пробником определить цоколевку выводов и структуру (p-n-p, n-p-n) неизвестных вам транзисторов опытным путем, просто попеременно подключая его щупы к разным выводам транзистора. При исправном транзисторе и правильном его подключении раздастся звуковой сигнал. Никакой, даже маломощный транзистор вы при этом не повредите (при неправильном его включении), так как токи при проверке очень малы и ограничены другими элементами схемы. Первая схема с трансформатором:

Аналогичный трансформатор можно взять из любого старого карманного транзисторного приемника, например «Нева», «Селга», «Сокол» и аналогичного (это – переходной трансформатор между каскадами приемника, а не тот, который стоит на выходе у динамика!). При этом вторичную обмотку трансформатора (она со средним выводом) надо уменьшить до 150 – 200 витков. Конденсатор может быть емкостью от 0,01 до 0,1 мкФ, при этом изменится только тональность звука при проверке. При исправном проверяемом транзисторе в телефонном капсюле, подключенном ко второй обмотке трансформатора, раздастся звук.

Второй пробник бестрансформаторный , хотя принцип работы аналогичен предыдущей схеме:


Пробник собирается в подходящем корпусе небольших размеров. Деталей немного и схему можно спаять навесным монтажом, прямо на контактах переключателя. Батарея типа «Крона». Переключатели – с двумя группами контактов на переключение, например типа «П2-К». Щупы «Эмиттер», «База» и «Коллектор» - провода разных цветов (лучше сделать так, чтобы буква цвета провода соответствовала выводу транзистора. Например: :коллектор – красный или коричневый, база - белый, эмиттер – любой другой цвет). Так удобнее будет пользоваться. На концы проводов нужно припаять наконечники, например из проволоки или тонких длинных гвоздей. Припаять провод к гвоздю можно на таблетке простого аспирина (ацетилсалициловая кислота). В качестве звукового излучателя следует взять высокоомный телефонный капсюль (типа «ДЭМШ» или, например, из телефонной трубки старых типов аппаратов), потому что громкость звука у них достаточно высокая. Или же использовать высокоомные наушники.


Пробник транзисторов, собранный по этой схеме, я лично использую уже много лет и он реально работает без всяких нареканий. Можно проверять любые транзисторы – от микромощных, до большой мощности. Только вот оставлять пробник с включенной батареей надолго не следует, потому что батарейка быстро сядет. Поскольку схема собиралась мной много лет назад, то использовались германиевые транзисторы типа МП-25А (или любые из серии МП-39, -40, -41, -42).


Вполне возможно, что подойдут и современные кремниевые транзисторы, но лично мною такой вариант на практике не проверялся. То есть схема будет, конечно, работоспособна как генератор, но как будет себя вести при проверки транзисторов без выпайки их из схемы, я сказать затрудняюсь. Потому что ток открывания германиевых элементов меньше, чем у кремниевых (типа КТ-361, КТ-3107 и др.).

Для этих целей можно сделать очень простой пробник-мультивибратор на двух транзисторах.

Таким пробником можно быстро найти неисправный каскад или активный элемент (транзистор или микросхему) в неработающей схеме. При проверке звуковых каскадов (усилителей, приемников и т.д.) его щуп Х2 нужно подключить к общему проводу (GND) проверяемой схемы, а щупом Х1 касаться поочередно выходных и входных точек каждого каскада, начиная от выхода всего устройства. Сигнализатором исправности/неисправности в данном случае является динамик (или наушники) проверяемого устройства. Например, сначала подаем сигнал на вход оконечного каскада (питание проверяемого устройства должно быть включено!) и, если звук в динамике есть, значит выходной каскад исправен. Затем касаемся щупом входа предоконечного каскада и т.д., двигаясь в сторону входных каскадов устройства. Если на каком-то из каскадов звука в динамике не будет, то здесь и следует искать неисправность.

Из-за простоты схемы этот пробник-генератор помимо основной частоты (около 1000 Гц) выдает и многочисленные гармоники, кратные основной частоте (10, 100, … к Гц). Поэтому его можно использовать и для высокочастотных каскадов, например, приемников. Причем щуп Х2 в этом случае не обязательно даже подключать к общему проводу проверяемого устройства, сигнал будет поступать на проверяемые каскады за счет емкостной связи. При проверке работоспособности приемника с магнитной антенной достаточно приблизить к антенне щуп Х1. Конструктивно этот пробник может быть сделан на плате из фольгированного текстолита и выглядеть так:


В качестве вкл./выкл. питания можно использовать микропереключатель (микрик, кнопку) без фиксации. Тогда питание на мультивибратор будет подаваться при нажатии на эту кнопку. Автор статьи: Барышев А.

Необходимость в таком приборе возникает каждый раз при ремонте сварочного инвертора – необходимо проверить мощный IGBT или MOSFET транзистор на предмет исправности, либо подобрать к исправному транзистору пару, либо при покупке новых транзисторов, убедиться, что это не «перемаркер». Эта тема неоднократно поднималась на множестве форумов, но так и не найдя готового (испытанного) или кем то сконструированного прибора, решил изготовить его самостоятельно.
Идея состоит в том, что необходимо иметь какую-то базу данных различных типов транзисторов, с которой сравнивать характеристики испытываемого транзистора, и если характеристики укладываются в определенные рамки, то его можно считать исправным. Все это делать по какой-то упрощенной методике и простым оборудованием. Необходимую базу данных придется собирать конечно же самому, но это все решаемо.

Прибор позволяет:
- определить исправность (неисправность) транзистора
- определить напряжение на затворе, необходимое для полного открытия транзистора
- определить относительное падение напряжения на К-Э выводах открытого транзистора
- определить относительную емкость затвора транзистора, даже в одной партии транзисторов есть разброс и его косвенно можно увидеть
- подобрать несколько транзисторов с одинаковыми параметрами

Схема

Принципиальная схема прибора представлена на рисунке.


Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» - мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на - для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора.

Прибор очень прост по устройству и собран из общедоступных деталей. У меня в наличии был какой-то трансформатор с габаритной мощностью около 40Вт и напряжением на вторичной обмотке 12В. При желании, и в случае необходимости прибор можно питать от АКБ 12В / 0,6 Ач (например). Так же был в наличии .

Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.
Далее, изучая и адаптируя вольтметр, обнаружил интересную его особенность, если на его клеммы L0 и HI подать напряжение, превышающее его верхний порог измерения (1В), то табло просто тухнет и он ничего не показывает, но стоит снизить напряжение и все возвращается к нормальной индикации (это все при постоянном питании +5В между клеммами 0V и 5V). Я решил использовать эту особенность. Думаю, что очень многие цифровые «показометры» имеют такую же особенность. Взять, к примеру, любой китайский цифровой тестер, если в режиме 20В на него подать 200В, то ничего страшного не произойдет, он лишь только высветит «1» и все. Такие табло, подобные моему сейчас есть в продаже.
Возможные .

О работе схемы

Дальше расскажу о четырех интересных моментах по схеме и ее работе:
1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…
2. Применение стабилизатора тока на позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.
3. Применение 4 шт диодов IN4148 в цепи затвора испытуемого транзистора для медленного разряда емкости затвора транзистора, когда напряжение на его затворе уже снято, а транзистор находится еще в открытом состоянии. Они имеют какой-то ничтожный ток утечки, которым и разряжается емкость.
4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора.
Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно…

Корпус и компоновка

Далее был приобретен корпус и все эти комплектующие расположены внутри.



Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.

Ну и вот так это выглядит в работе:

Как пользоваться прибором

1. Включаем прибор в сеть, при этом начинает моргать светодиод, «показометр» не светится
2. Подключаем испытуемый транзистор (как на фото выше)
3. Устанавливаем ручку регулятора напряжения на затворе в крайнее левое положение (против часовой стрелки)
4. Нажимаем на кнопку «Откр» и одновременно потихоньку прибавляем регулятор напряжения по часовой стрелке до момента зажигания «показометра»
5. Останавливаемся, отпускаем кнопку «Откр», снимаем показания с регулятора и записываем. Это есть напряжение открытия.
6. Поворачиваем регулятор до упора по часовой стрелке
7. Нажимаем кнопку «Откр», зажжется «показометр», снимаем с него показания и записываем. Это есть напряжение К-Э на открытом транзисторе
8. Возможно, что за время, потраченное на записи, транзистор уже закрылся, тогда открываем его еще раз кнопкой, и после этого отпускаем кнопку «Откр» и нажимаем кнопку «Закр» - транзистор должен закрыться и «показометр» соответственно потухнуть. Это есть проверка целостности транзистора – открывается и закрывается
9. Опять открываем транзистор кнопкой «Откр» (регулятор напряжения в максимуме) и, дождавшись ранее записанных показаний, отпускаем кнопку «Откр» одновременно начиная подсчитывать количество вспышек (морганий) светодиода
10. Дождавшись потухания «показометра» записываем количество вспышек светодиода. Это и есть относительное время разряда емкости затвора транзистора или время закрытия (до увеличения падения напряжения на закрывающемся транзисторе более чем 1В). Чем это время (количество) больше, тем соответственно емкость затвора больше.

Дальше проверяем все имеющиеся транзисторы, и все данные сводим в таблицу.
Именно из этой таблицы и происходит сравнительный анализ транзисторов – фирменные они или «перемаркеры», соответствуют своим характеристикам или нет.

Ниже приведена таблица, которая получилась у меня. Желтым выделены транзисторы, которых не оказалось в наличии, но я ими точно когда то пользовался, поэтому оставил их на будущее. Безусловно, в ней представлены не все транзисторы, которые проходили через мои руки, кое что просто не записал, хотя пишу вроде всегда. Безусловно у кого то при повторении этого прибора может получиться таблица с несколько иными цифрами, это возможно, т.к цифры зависят от многих вещей: от имеющейся лампочки или трансформатора или АКБ, например.


Из таблицы видно, чем отличаются, транзисторы, например G30N60A4 от GP4068D. Отличаются временем закрытия. Оба транзистора применяются в одном и том же аппарате – Телвин, Техника 164, только первые применялись немного раньше (года 3, 4 назад), а вторые применяются сейчас. Да и остальные характеристики по ДАТАШИТ у них приблизительно одинаковы. А в данной ситуации все наглядно видно – все налицо.

Кроме того, если у Вас получилась табличка всего из 3-4 или 5 типов транзисторов, и остальных просто нет в наличии, то можно, наверное, посчитать коэффициент «согласованности» ваших цифр с моей таблицей и, используя его, продолжить свою таблицу, используя цифры из моей таблицы. Думаю, что зависимость «согласованности“ в этой ситуации будет линейной. Для первого времени, наверное хватит, а потом подкорректируете свою таблицу со временем.
На этот прибор я потратил около 3 дней, один из которых покупал некоторую мелочевку, корпус и еще один на настройку и отладку. Остальное работа.

Безусловно, в приборе возможны варианты исполнения: например применение более дешевого стрелочного милливольтметра (необходимо подумать об ограничении хода стрелки вправо при закрытом транзисторе), использовании вместо лампочки еще одного стабилизатора на , применении АКБ, установить дополнительно переключатель для проверки транзисторов с p-каналом и т.д. Но принцип при этом в приборе не изменится.

Еще раз повторюсь, прибор не измеряет величин (цифр) указанных в ДАТАШИТАХ , он делает почти то же самое, но в относительных единицах, сравнивая один образец с другим. Прибор не измеряет характеристик в динамическом режиме, это только статика, как обычным тестером. Но и тестером не все транзисторы поддаются проверке, да и не все параметры можно увидеть. На таких я обычно ставлю маркером знак вопроса "?"

Можно соорудить и проверку в динамике, поставить маленький ШИМ на К176 серии, или что-то подобное.
Но прибор вообще простой и бюджетный, а главное, он привязывает всех испытуемых к одним рамкам.

Сергей (s237)

Украина, Киев

Меня зовут Сергей, проживаю в Киеве, возраст 46 лет. Имею свой автомобиль, свой паяльник, и даже, свое рабочее место на кухне, где ваяю что либо интересное.

Люблю качественную музыку на качественном оборудовании. У меня есть древненький Техникс, на нем все и звучит. Женат, есть взрослые дети.

Бывший военный. Работаю мастером по ремонту и регулировке сварочного, в том числе инверторного, оборудования, стабилизаторов напряжения и многого другого, где присутствует электроника.

Достижений особых не имею, кроме того, что стараюсь быть методичным, последовательным и, по возможности, доводить начатое до конца. Пришел к Вам нетолько взять, но и по возможности - дать, обсудить, поговорить. Вот кратко и все.

Читательское голосование

Статью одобрили 75 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.