Схемы стабилизаторов постоянного напряжения защитой по току. LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet. Контрольные и защитные системы



Предлагаем большой выбор полностью автоматических аппаратов малой и высокой мощности от ведущего производителя «ЭТК Энергия» предназначенные для высокоскоростного устранения некачественного электроснабжения путём выравнивания скачков и просадок в однофазной и трёхфазной сети переменного тока и напряжения. В большинстве случаев наши модели Энергия и Вольтрон относятся к группе сетевых приборов премиум класса, но при этом есть и обычные серии, которые приспособлены решать проблемы в некритических условиях непрерывной эксплуатации. А сегодня мы располагаем хорошим ассортиментом релейных, гибридных, электромеханических и электронных (тиристорных) достойных своего внимания аппаратов. Купить стабилизатор напряжения с защитой по току возможно в Москве, Санкт-Петербурге и регионах. Кроме этой основной задачи по сглаживанию перепадов данные стабилизирующие устройства для электросетей 220В, 380В помогут подавить помехи, качественно поддержат хороший режим работы офисной или бытовой техники при кратковременных перегрузках и обеспечат полную безопасность современных потребителей при коротком замыкании. Для этого в конструкции 1-фазного, а также 3-фазного электрооборудования Энергия и Voltron применяются самые лучшие и надёжные рабочие элементы. Диапазон успешной работоспособности у многих марок составляет 100 … 280 Вольт. Есть также и универсальные высокой точности (погрешность ±3, ±5 процентов) приборы с плавной системой регулировки (Энергия Classic и Ultra 5000, 7500, 9000, 12000, 15000, 20000) способные без особых сложностей стабилизировать подачу электроэнергии от 65В.


Высококачественные стабилизаторы напряжения с защитой по току в нашем интернет магазине представлены самыми востребованными мощностями (2, 3, 5, 8, 10, 15, 20, 30 кВт), которые идеально подходят для круглосуточного применения в офисе, на даче, дома и в промышленных объектах. Гибридные и тиристорные высокоточные модели имеют чистую синусоидальную форму сигнала, благодаря чему успешно функционируют с простой и высокочувствительной электротехникой различного назначения. Среди отечественной сертифицированной продукции для стабилизации переменной сети также представлены к покупке усовершенствованные по технологии морозостойкие устройства, что позволяет безотказно работать при отрицательных температурах. Купить стабилизатор напряжения с защитой по току в Москве, СПБ вы можете через наш официальный сайт по минимальной цене от надёжного производителя. За счёт особого строения корпуса некоторые однофазные российские марки, возможно, установить стандартным напольным вариантом либо использовать более компактный и удобный способ крепления - на стене (настенный). В тех высокоэффективных линейках, где предусмотрено плавное выравнивание заниженного или критически завышенного питания совершенно отсутствует мерцание лампочек, что иногда доставляет небольшие неудобства в жилых домах, квартирах или дачах. По издаваемому во время эксплуатации оборудования уровню шума имеются абсолютно бесшумные и недорогие малошумные сетевые электроприборы. Гарантия на рекомендуемые к покупке аппараты российского производства, широко пользующиеся спросом в России, составляет 1-3 года. Совершенно все серии являются энергосберегающими и оснащены функцией автоматической самодиагностики.

Для питания некоторых радиотехнических устройств требуется источник питания с повышенными требованиями к уровню минимальных выходных пульсаций и стабильности напряжения. Чтобы их обеспечить, блок питания приходится выполнять на дискретных элементах.

Приведенная на рис. 4.7 схема является универсальной и на ее основе можно сделать высококачественный источник питания на любое напряжение и ток в нагрузке.

Рис. 4.7. Электрическая схема источника питания

Блок питания собран на широко распространенном сдвоенном операционном усилителе (КР140УД20А) и одном силовом транзисторе VT1. При этом схема имеет защиту по току, которую можно регулировать в широких пределах.

На операционном усилителе DA1.1 выполнен стабилизатор напряжения, а DA1.2 используется для обеспечения защиты по току. Микросхемы DA2, DA3 стабилизируют питание схемы управления, собранной на DA1, что позволяет улучшить параметры источника питания.

Работает схема стабилизации напряжения следующим образом. С выхода источника (Х2) снимается обратная связь по напряжению. Этот сигнал сравнивается с опорным напряжением, поступающим со стабилитрона VD1. На вход ОУ подается сигнал рассогласования (разность этих напряжений), который усиливается и поступает через R10-R11 на управление транзистором VT1. Таким образом выходное напряжение поддерживается на заданном уровне с точностью, определяемой коэффициентом усиления ОУ DA1.1.

Нужное выходное напряжение устанавливается резистором R5.

Для того, чтобы у источника питания имелась возможность устанавливать выходное напряжение более 15 В, общий провод для схемы управления подключен к клемме "+" (Х1). При этом для полного открывания силового транзистора (VT1) на выходе ОУ потребуется небольшое напряжение (на базе VT1 Uбэ=+1,2 В).

Такое построение схемы позволяет выполнять источники питания на любое напряжение, ограниченное только допустимой величиной напряжения коллектор-эмиттер (Uкэ) для конкретного типа силового транзистора (для КТ827А максимальное Uкэ=80 В).

В данной схеме силовой транзистор является составным и поэтому может иметь коэффициент усиления в диапазоне 750...1700, что позволяет управлять им небольшим током - непосредственно с выхода ОУ DA1.1. Это снижает число необходимых элементов и упрощает схему.

Схема защиты по току собрана на ОУ DA1.2. При протекании тока в нагрузке на резисторе R12 выделяется напряжение. Оно через резистор R6 прикладывается к точке соединения R4-R8, где сравнивается с опорным уровнем. Пока эта разница отрицательна (что зависит от тока в нагрузке и величины сопротивления резистора R12) - эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

Как только напряжение в указанной точке станет положительным, на выходе ОУ DA1.2 появится отрицательное напряжение, которое через диод VD12 уменьшит напряжение на базе силового транзистора VT1, ограничивая выходной ток. Уровень ограничения выходного тока регулируется с помощью резистора R6.

Параллельно включенные диоды на входах операционных усилителей (VD3...VD7) обеспечивают защиту микросхемы от повреждения в случае включения ее без обратной связи через транзистор VT1 или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Установленный в цепи отрицательной обратной связи конденсатор С3 ограничивает полосу усиливаемых частот, что повышает устойчивость работы схемы, предотвращая самовозбуждение.

Аналогичную схему источника питания можно выполнить на транзисторе с другой проводимостью КТ825А (рис. 4.8).

Рис. 4.8 Второй вариант схемы источника питания

При использовании указанных на схемах элементов данные источники питания позволяют на выходе получать стабилизированное напряжение до 50 В при токе 1.5 А.

Технические параметры стабилизированного источника питания получаются не хуже указанных для аналогичной по принципу работы схемы, приведенной на рис. 4.10.

Рис. 4.10. Электрическая схема

Силовой транзистор устанавливается на радиатор, площадь которого зависит от тока в нагрузке и напряжения Uкэ. Для нормальной работы стабилизатора это напряжение должно быть не менее 3 В.

При сборке схемы использованы детали: подстроечные резисторы R5 и R6 типа СПЗ-19а; постоянные резисторы R12 типа С5-16МВ на мощность не менее 5 Вт (мощность зависит от тока в нагрузке), остальные из серии МЛТ и С2-23 соответствующей мощности. Конденсаторы С1, С2, С3 типа К10-17, оксидные полярные конденсаторы С4...С9 типа К50-35 (К50-32).

Микросхема сдвоенного операционного усилителя DA1 может быть заменена импортным аналогом маА747 или двумя микросхемами 140УД7; стабилизаторы напряжения: DA2 на 78L15, DA3 на 79L15.

Параметры сетевого трансформатора Т1 зависят от необходимой мощности, поступающей в нагрузку. Для напряжения до 30 В и тока 3 А можно использовать такой же, как и в схеме на рис. 4.10. Во вторичной обмотке трансформатора после выпрямления на конденсаторе С6 должно обеспечиваться напряжение на 3.5 В больше, чем требуется получить на выходе стабилизатора.

В заключение можно отметить, что если источник питания предполагается использовать в широком температурном диапазоне (-60...+100°С), то для получения хороших технических характеристик необходимо применять дополнительные меры. К их числу относится повышение стабильности опорных напряжений. Это можно осуществить за счет выбора стабилитронов VD1, VD2 с минимальным. ТКН, а также стабилизации тока через них. Обычно стабилизацию тока через стабилитрон выполняют при помощи полевого транзистора или же применением дополнительной микросхемы, работающей в режиме стабилизации тока через стабилитрон, рис. 4.9.

Для питания некоторых радиотехнических устройств требуется источник питания с повышенными требованиями к уровню минимальных выходных пульсаций и стабильности напряжения. Чтобы их обеспечить, блок питания приходится выполнять на дискретных элементах.

Приведенная на рис. 3.23 схема является универсальной и на ее основе можно сделать высококачественный источник питания на любое напряжение и ток в нагрузке. Блок питания собран на широко распространенном сдвоенном операционном усилителе (КР140УД20А) и одном силовом транзисторе VT1. При этом схема имеет защиту по току, которую можно регулировать в широких пределах. На операционном усилителе DA1.1 выполнен стабилизатор напряжения, a DA1.2 используется для обеспечения защиты по току. Микросхемы DA2, DA3 стабилизируют питание схемы управления, собранной на DA1, что позволяет улучшить параметры источника питания.

Работает схема стабилизации напряжения следующим образом. С выхода источника (Х2) снимается сигнал обратной связи по напряжению. Этот сигнал сравнивается с опорным напряжением, поступающим со стабилитрона VD1. На вход ОУ подается сигнал рассогласования (разность этих напряжений), который усиливается и поступает через резисторы R10...R11 на управление транзистором VT1.

Таким образом, выходное напряжение поддерживается на заданном уровне с точностью, определяемой коэффициентом усиления ОУ DA1.1. Нужное выходное напряжение устанавливается резистором R5. Для того, чтобы у источника питания имелась возможность устанавливать выходное напряжение более 15 В, общий провод схемы управления подключен к клемме «+» (XI). При этом для полного открывания силового транзистора (VT1) на выходе ОУ потребуется небольшое напряжение (на базе VT1 ибэ = +1,2 В). Такое построение схемы позволяет выполнять источники питания на любое напряжение, ограниченное только допустимой величиной напряжения коллектор-эмиттер (UK3) для конкретного типа силового транзистора (для КТ827А максимальное UK3 = 80 В).

В данной схеме силовой транзистор является составным и поэтому может иметь коэффициент усиления в диапазоне 750... 1700, что позволяет управлять им небольшим током — непосредственно с выхода ОУ DA1.1, что снижает число необходимых элементов и упрощает схему.

Схема защиты по току собрана на ОУ DA1.2. При протекании тока в нагрузке на резисторе R12 выделяется напряжение, которое через резистор R6 прикладывается к точке соединения R4, R8, где сравнивается с опорным уровнем. Пока эта разница отрицательна (что зависит от тока в нагрузке и величины сопротивления резистора R12) — эта часть схемы не оказывает влияния на работу стабилизатора напряжения. Как только напряжение в указанной точке станет положительным, на выходе ОУ DAL2 появится отрицательное напряжение, которое через диод VD12 уменьшит напряжение на базе силового транзистора VT1, ограничивая выходной ток.

Уровень ограничения выходного тока регулируется с помощью резистора R6. Параллельно включенные диоды на входах операционных усилителей (VD3...VD6) обеспечивают защиту микросхемы от повреждения в случае включения ее без обратной связи через транзистор VT1 или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства. Установленный в цепи отрицательной обратной связи конденсатор СЗ ограничивает полосу усиливаемых частот, что повышает устойчивость работы схемы, предотвращая самовозбуждение.

При использовании указанных на схемах элементов данные источники питания позволяют на выходе получать стабилизированное напряжение до 50 В при токе 1...5 А.

Силовой транзистор устанавливается на радиатор, площадь которого зависит от тока в нагрузке и напряжения UK3. Для нормальной работы стабилизатора это напряжение должно быть не менее 3 В

При сборке схемы использованы детали: подстросчные резисторы R5 и R6 типа СПЗ-19а; постоянные резисторы R12 типа С5-16МВ на мощность не менее 5 Вт (мощность зависит от тока в нагрузке), остальные из серии MJ1T и С2-23 соответствующей мощности Конденсаторы CI, С2, СЗ типа К10-17, оксидные полярные конденсаторы С4...С9 типа К50-35 (К50-32). Микросхема сдвоенного операционного усилителя DA1 может быть заменена импортным аналогом цА747 или двумя микросхемами 140УД7; стабилизаторы напряжения: DA2 на 78L15, DA3 на 79L15. Параметры сетевого трансформатора Т1 зависят от необходимой мощности, поступающей в нагрузку. Во вторичной обмотке трансформатора после выпрямления на конденсаторе С6 должно обеспечиваться напряжение на 3...5 В больше, чем требуется получить на выходе стабилизатора.

В заключение можно отметить, что если источник питания предполагается использовать в широком температурном диапазоне (~60...+100°С), то для получения хороших технических характеристик необходимо применять дополнительные меры К их числу относится повышение стабильности опорных напряжений. Это можно осуществить за счет выбора стабилитронов VD1, VD2 с минимальным ТКН, а также стабилизации тока через них Обычно стабилизацию тока через стабилитрон выполняют при помощи полевого транзистора или же применением дополнительной микросхемы, работающей в режиме стабилизации тока через стабилитрон. Кроме того, стабилитроны обеспечивают наилучшую термостабильность напряжения в определенной точке своей характеристики. В паспорте на прецизионные стабилитроны обычно это значение тока указывается и именно его надо устанавливать подстроечными резисторами при настройке узла источника опорного напряжения, для чего в цепь стабилитрона временно включается миллиамперметр.

Рассказать в:
Вашему вниманию предлагается качественный, практичный мощный блок питания. Для питания некоторых радиотехнических устройств иногда требуется источник питания с повышенными требованиями к уровню минимальных выходных пульсаций и стабильности напряжения. Чтобы их обеспечить, блок питания приходится выполнять на дискретных элементах. Приведенная схема является универсальной и на ее основе можно сделать высококачественный источник питания на любое напряжение и ток в нагрузке.
рис.1
Блок питания собран на широко распространенном сдвоенном операционном усилителе (КР140УД20А) и трех силовых транзисторах VT1-VT3 N-P-N-проводимости. При этом схема имеет защиту по току, которую можно регулировать в широких пределах и которая должна срабатывать достаточно быстро, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе. На операционном усилителе DA1.1 выполнен стабилизатор напряжения, a DA1.2 используется для обеспечения защиты по току. Микросхемы DA2, DA3 стабилизируют питание схемы управления, собранной на DA1, что позволяет улучшить параметры источника питания. Работает схема стабилизации напряжения следующим образом. С выхода источника (Х2) снимается обратная связь по напряжению. Этот сигнал сравнивается с опорным напряжением, поступающим со стабилитрона VD1. На вход ОУ подается сигнал рассогласования (разность этих напряжений), который усиливается и поступает через R16-R17 на управление транзисторами VT1-VT3. Таким образом, выходное напряжение поддерживается на заданном уровне с точностью, определяемой коэффициентом усиления ОУ DA1.1. Нужное выходное напряжение устанавливается резисторами R10-R15. Для того, чтобы у источника питания имелась возможность устанавливать выходное напряжение более 15 В, общий провод для схемы управления подключен к клемме "+" (Х1). При этом для полного открывания силовых транзисторов (VT1-VT3) на выходе ОУ потребуется небольшое напряжение (на базах Uбэ=+1,2 В). Такое построение схемы позволяет выполнять источники питания на любое напряжение, ограниченное только допустимой величиной напряжения коллектор-эмиттер (Uкэ) для конкретного типа силовых транзисторов (для КТ827А максимальное Uкэ=100 В, КТ827Б - 80 В). В данной схеме силовые транзисторы являются составными и, поэтому могут иметь коэффициент усиления в диапазоне 750... 18000, что позволяет управлять ими небольшим током - непосредственно с выхода ОУ DA1.1. Это снижает число необходимых элементов и упрощает схему. Схема защиты по току собрана на ОУ DA1.2. При протекании тока в нагрузке на резисторе R5 выделяется напряжение. Оно через резистор R11 прикладывается к точке соединения R9-R13, где сравнивается с опорным уровнем. Пока эта разница отрицательна (что зависит от тока в нагрузке и величины сопротивления резистора R5) - эта часть схемы не оказывает влияния на работу стабилизатора напряжения. Как только напряжение в указанной точке станет положительным, на выходе ОУ DA1.2 появится отрицательное напряжение, которое через диод VD9 уменьшит напряжение на базе силовых транзисторов VT1-VT3, ограничивая выходной ток. Уровень ограничения выходного тока регулируется с помощью резистора R11. Параллельно включенные диоды на входах операционных усилителей (VD5...VD8) обеспечивают защиту микросхемы от повреждения в случае включения ее без обратной связи через транзисторы VT1-VT3 или при повреждении (одного из) силовых из транзисторов. В рабочем режиме напряжение на входах ОУ близко к нулю, и диоды не оказывают влияния на работу устройства. Установленный в цепи отрицательной обратной связи конденсатор С12 ограничивает полосу усиливаемых частот, что повышает устойчивость работы схемы, предотвращая самовозбуждение. При использовании указанных на схемах элементов данные источники питания позволяют на выходе получать стабилизированное напряжение до 50 В при токе до 5 А. Силовые транзисторы устанавливаются на радиатор, площадь которого зависит от тока в нагрузке и напряжения Uкэ (не менее 1500см2). Для нормальной работы стабилизатора это напряжение должно быть не менее 3 В. R1-для разрядки емкостей после выключения БП. Аналогично выполнена вторая половина БП на основе 3-х параллельно соединенных транзисторах P-N-P-проводимости 2Т825А (КТ825Г).

рис.2 При сборке схемы кроме указанных можно использовать: диоды выпрямителя (диодный мост), рассчитанные на ток не менее 10А, напряжение более 200В (на радиаторы), VD5-VD8-1N4148, VD9-VD10-любые на ток 1А, напряжение 100В, переменные, подстроечные резисторы R11 (впоследствии заменен галетным переключателем с установленными и предварительно подобранными в ходе настройки токоограничивающими резисторами), R10 и R15 типа СП3-19а, СПО-0,5 и т.д. (в схеме использованы многооборотные проволочные для плавного изменения напряжения на выходе с точностью до 0,1В; постоянные резисторы R2-R5 типа С5-16МВ (проволочные или импортные) на мощность не менее 5 Вт (мощность зависит от тока в нагрузке), остальные из серии МЛТ, ВС, С2-23 соответствующей мощности. Конденсаторы С4, С5, С14 желательно качественные, например полипропиленовые (импортные с маркировкой МКР). Микросхема сдвоенного операционного усилителя DA1 может быть заменена импортным аналогом мА747С или двумя микросхемами К(Р)140УД7 (соответственно согласно цоколевке необходима правильная печатная плата); стабилизаторы напряжения: DA2-DA3-любые отечественные, импортные на +-15В (78L15,79L15 и т.д.). С12-типа К10-17, С10-С11-пленочные (К73-17 и др.).Стабилитроны VD1, VD2 с минимальным ТКН - Д818 (с любым буквенным индексом). Параметры сетевого трансформатора Тр1 зависят от необходимой мощности, поступающей в нагрузку (в данном случае ОСМ-0,4кВт). Во вторичной обмотке трансформатора после выпрямления на конденсаторе С2 должно обеспечиваться напряжение на 5-7 В больше, чем требуется получить на выходе стабилизатора (41 В-переменное). Мощная вторичная обмотка намотана в два провода сечением 0,85мм2 каждый, одинарный должен быть сечением не менее 1,5мм2. В качестве Тр2-любой мощностью около 20Вт, имеющий две сдвоенные обмотки 2х 17 В (на каждую половину БП свои отдельные обмотки с общей точкой для питания стабилизаторов) с током нагрузки 200мА. Выходные транзисторы необходимо подобрать с близкими параметрами, а именно: по коэффициенту усиления. Для этого во время настройки, подбора постоянных резисторов вместо R11- мультиметрами подключится к резисторам R2-R4, расположенных на радиаторе (можно по очереди, если нет достаточного количества мультиметров), подключить нагрузку к примеру с током 1 А и зафиксировать значения падений напряжений (по постоянному току) на каждом из резисторов, сравнить их, они должны быть максимально близки друг к друга, если имеется существенное отличие на каком-то резисторе, то необходимо заменить данный транзистор на другой и повторить измерения. Такое количество применяемых мощных транзисторов вызвано тем, чтобы более равномерно распределить тепловыделение на них при большой нагрузке, что обеспечит стабильность, устойчивость работы БП в целом, хотя и один транзистор достаточно устойчив к работе в предельных режимах. В ходе испытаний при токе 5А два транзистора из трех КТ827А дали утечку между КЭ (не пробой, Rкэ=9ком),видимо, вследствие сильного разброса параметров. Амперметр с током полного отклонения 5 и более ампер (с шунтом там, где это необходимо). Прошу учесть, если нагрузка в виде спирали (мощного проволочного резистора), то с течением времени она (он) будет нагреваться и, соответственно, сопротивление будет увеличиваться, а ток, наоборот, уменьшаться, поэтому измерения желательно осуществлять быстро. Извините за некачественную печатную плату от руки (элементы выпрямителя и фильтрации по питанию, платы стабилизаций по питанию +-15В не указаны, хотя реально они расположены на одной печатной плате.).
Раздел:

Стабилизатор тока с защитой от КЗ

Защита стабилизатора тока от перегрузки

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема регулируемого стабилизатора тока взята из статьи . Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье .

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.