Первоначальная настройка нового модема. Классификация модемов. Сравнительный анализ различных классов. Оценка характеристик Как работают протоколы коррекции ошибок

Любая система передачи данных (СПД) может быть описана через три основные свои компоненты. Такими компонентами являются передатчик (или так называемый "источник передачи информации"), канал передачи данных и приемник (также называемый "получателем" информации).

При двухсторонней (дуплексной передаче) источник и получатель могут быть объединены так, что их оборудование может передавать и принимать данные одновременно.

В простейшем случае СПД между точками А и В состоит из следующих основных семи частей:

  • Оконечного оборудования данных в точке А;
  • Интерфейса (или стыка) между оконечным оборудованием данных и аппаратурой канала данных;
  • Аппаратуры канала данных в точке А;
  • Канала передачи между точками А и В;
  • Аппаратуры канала данных в точке В;
  • Интерфейса (или стыка) аппаратуры канала данных;
  • Оконечного оборудования данных в точке В.

Оконечное оборудование данных (ООД) обобщенное понятие, используемое для описания оконечного прибора пользователя или его части. ООД может являться источником информации, ее получателем или тем и другим одновременно.

ООД передает и (или) принимает данные посредством использования аппаратуры канала данных (АКД) и канала передачи. Соответствующий международный термин - DTE (Data Terminal Equipment). Часто в качестве DTE может выступать персональный компьютер, большая ЭВМ (mainframe computer), терминал или любое другое оборудование, способное передавать или принимать данные.

Аппаратуру канала данных также называют аппаратурой передачи данных (АПД). Международный термин DCE (Data Communications Equipment). Функция DCE состоит в обеспечении возможности передачи информации между двумя или большим числом DTE по каналу определенного типа, например, по телефонному. Для этого DCE должен обеспечить соединение с DTE с одной стороны, и с каналом передачи - с другой. DCE может являться аналоговым модемом, если используется аналоговый канал, или, например, устройством обслуживания. канала/данных (CSU/DSU - Channel Semis Unit/ Data Service Unit), если используется цифровой канал.

Аналоговые и цифровые каналы связи.

Канал связи - совокупность среды распространения и технических средств передачи между двумя канальными интерфейсами.

В зависимости от типа передаваемых сигналов различают два больших класса каналов связи цифровые и аналоговые.

Цифровой канал является битовым трактом с цифровым (импульсным) сигналом на входе и выходе канала.

На вход аналогового канала поступает непрерывный сигнал, и с его выхода также снимается непрерывный сигнал.

Параметры сигналов могут быть непрерывными или принимать только дискретные значения. Сигналы могут содержать информацию либо в каждый момент времени (непрерывные во времени, аналоговые сигналы), либо только в определенные, дискретные моменты времени (цифровые, дискретные, импульсные сигналы).

Вновь создаваемые СПД стараются строить на основе цифровых каналов, обладающих рядом преимуществ перед аналоговыми.

Информация независимо от своего конкретного содержания и формы всегда передается от источника к потребителю. Информацию, представленную в определенной форме, называют сообщением. Для передачи сообщения от источника к потребителю, удаленных друг от друга необходима система связи.

Системой связи (системой обмена) называют совокупность технических средств и математических методов, предназначенных для организации обмена сообщениями между пунктами. Схема такой системы связи между двумя пунктами включает в себя передатчик П , канал К и приемник Пр .

Передатчик - это комплекс технических устройств, предназначенных для преобразования сообщения некоторого источника в сигнал, который может быть передан по данному каналу.

Канал связи - совокупность технических средств и физическая среда, предназначенные для передачи сигнала.

Физическая среда, по которой распространяется сигнал (например, электромагнитные колебания), называется линией .

Приемник - комплекс технических устройств, осуществляющих преобразование сигнала, появляющегося на выходе канала, в сообщение.

Преобразование сообщения в сигнал при передаче сводится к операциям кодирования и модуляции, для реализации которых в передатчике имеются кодирующее устройство и модулятор. Соответственно приемник включает в себя демодулятор и декодирующее устройство.

Каналы классифицируют по различным признакам.

В зависимости от назначения системы, в состав которой входят каналы, их подразделяют на телефонные, телевизионные, телеграфные, телеметрические, телекомандные, передачи цифровой информации и др.; по используемым линиям связи - на кабельные, радиорелейные и др.; по полосе занимаемых частот - на тональные, надтональные, высокочастотные, коротковолновые, световые и др.

В зависимости от структуры сигналов каналы подразделяют на непрерывные, дискретные и комбинированные (непрерывно-дискретные или дискретно-непрерывные). В непрерывных каналах связи для передачи сообщений используют непрерывные сигналы, в дискретных - дискретные и, наконец, в комбинированных - сигналы того и другого вида.

Такое подразделение каналов связи и введенное ранее подразделение сигналов на непрерывные и дискретные приводит к четырем возможным разновидностям организации передачи сообщений от источника к потребителю:

  1. Источник информации вырабатывает непрерывный сигнал, доставляемый потребителю в форме непрерывной функции, - канал связи непрерывный.
  2. Источник информации вырабатывает непрерывный сигнал, доставляемый потребителю в дискретной форме, - канал связи непрерывно-дискретный.
  3. Источник информации вырабатывает дискретный сигнал, доcтавляемый потребителю в форме непрерывной функции, - канал связи дискретно-непрерывный.
  4. Источник информации вырабатывает дискретный сигнал, доставляемый потребителю в дискретной форме, - канал связи дискретный.

Классификация дискретных и непрерывных каналов условна, так как часто дискретный канал содержит внутри себя непрерывный канал, на входе и выходе которого имеются непрерывные сигналы.

Теоретически дискретный канал определяют, задаваясь алфавитом кодовых символов на входе, алфавитом кодовых символов на выходе, количеством информации, пропускаемой каналом в единицу времени, и значением вероятностных характеристик.

В зависимости от количества кодовых символов в алфавите (используемой системы счисления) канал называют двоичным, если m =2, троичным - т =3 и т. д.

Источники и потребители информации могут объединяться между собой как по прямым (некоммутируемым) каналам, так и по транзитным трактам, составленным из нескольких каналов путем их коммутации (КК - коммутация каналов) или поэтапной передачей сообщений через центры коммутации по мере освобождения каналов данного направления (КС - коммутация сообщений).

Каналы, объединяющие между собой оконечные устройства (источники, потребители) и центры коммутации, называют абонентскими (АК).

Аналоговые каналы являются наиболее распространенными по причине длительной истории их развития и простоты реализации. При передаче данных на входе аналогового канала должно находиться устройство, которое преобразовывало бы цифровые данные, приходящие от DTE, в аналоговые сигналы, посылаемые в канал. Приемник должен содержать устройство, которое преобразовывало бы обратно принятые непрерывные сигналы в цифровые данные. Этими устройствами являются модемы.

Аналогично, при передаче по цифровым каналам данные от DTE приходится приводить к виду, принятому для данного конкретного канала. Этим преобразованием занимаются цифровые модемы.

Базовая модель коммуникационных систем

Теоретическую основу современных информационных сетей определяет Базовая эталонная модель взаимодействия открытых систем (OSI - Open Systems Interconnection) Международной организации стандартов (ISO - International Standards Organization). Она описана стандартом ISO 7498. Модель является международным стандартом для передачи данных.

Согласно эталонной модели взаимодействия OSI выделяются семь уровней, обра-зующих область взаимодействия открытых систем.

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль. Благодаря этому общая задача передачи данных расщепляется на от-дельные конкретные задачи. Функции уровня, в зависимости от его номера, могут вы-полняться программными, аппаратными либо программно-аппаратными средствами. Как правило, реализация функций высших уровней носит программный характер, функции канального и сетевого уровней могут быть исполнены как программными, так и аппаратными средствами. Физический уровень обычно выполняется в аппаратном виде.

Каждый уровень определяется группой стандартов, которые включают в себя две спецификации: протокол и обеспечиваемый для вышестоящего уровня сервис.

Под протоколом подразумевается набор правил и форматов, определяющих взаимодействие объектов одного уровня модели.

Модемы .

История модемов началась в 30-х годах. Именно тогда появилась аппаратура, позволяющая передавать человеческую речь на большие расстояния, официально именуемая "аппаратурой тонального телеграфирования" и лишь особо продвинутыми специалистами называемая "модем". Вообще говоря, человеческая речь передается по телефонным проводам в виде колебаний электрического напряжения. Для того чтобы качество было безупречным, надо передавать колебания с частотами от 50 до 10 000 Гц. Но обеспечить передачу такого широкого диапазона частот слишком дорого, поэтому ограничиваются диапазоном частот, обеспечивающим удовлетворительную разборчивость речи, - от 300 до 3400 Гц.

Сигнал на выходе телеграфного аппарата имеет колебания частот от 0 Гц (то есть постоянного тока) до 200 Гц. Понятно, что такой диапазон частот не попадал в границы полосы пропускания и поэтому не мог быть передан через телефонную аппаратуру, предназначенную для дальней связи, а создавать специальные линии для телеграфа было невыгодно.

Тогда было придумано устройство для подсоединения телеграфного аппарата к телефонному каналу, что потребовало адаптации к полосе пропускания телефонной линии. На выходе телеграфного аппарата напряжение может принимать два фиксированных значения, соответствующие нулю и единице. Если сначала закодировать, а потом по тому же алгоритму раскодировать сигнал, получается прообраз современных модемов.

Создание устройства, которое для напряжения отрицательной полярности передавало в телефонный канал сигнал произвольной частоты, а для напряжения положительной полярности - сигнал другой частоты, позволило вписать сигнал в диапазон телефонного канала. На другом конце стояло устройство, определяющее частоту принимаемого сигнала и превращающее сигналы различной частоты в сигналы разной полярности. Первый из процессов называется модуляцией, а второй, обратный ему, демодуляцией. Так как по телефонному каналу возможна одновременная связь в двух направлениях, то на каждом из концов канала ставились устройства, осуществлявшие как модуляцию, так и демодуляцию. От сокращения слов "модуляция" и "демодуляция" и было образовано слово "модем".

Самым первым модемом для ПК стало устройство производства компании Hayes Microcomputer Products, которая в 1979 году выпустила Micromodem II для популярных тогда персональных компьютеров Apple II. Модем стоил $380 и работал со скоростью 110/300 bps. До этого на рынке существовали только специализированные устройства, которые объединяли мейнфреймы.

Кстати, фирма Hayes выпустила в 1981 году и первый модем Smartmodem 300 bps, система команд которого стала отраслевым стандартом и остается им по сей день. Первые модемы с "коммерческой" скоростью передачи 2400 bps были представлены несколькими компаниями в декабре 1981 года на выставке Comdex по цене $800-900. А затем настало время U.S. Robotics. В 1985 году эта компания начала выпуск своей знаменитой серии Courier, существенно снизив планку стоимости модемов 2400 бит/с. В начале следующего года появился первый модем Courier HST со скоростью передачи 9600 бит/с, а в 1988 году - модемы Courier Dual Standard, которые поддерживали протоколы связи HST и v.32 ($1600), и Courier v.32 ($1500). Еще через два года был выпущен модем Courier v.32bis, в 1994-м - Sportster v.34 со скоростью передачи 28,8 Кбит/с ($349), а в 1995-м - Courier v.Everything 33,6 Кбит/с.

Цифровые сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи - непрерывных сигналов звуковой частоты.

Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток частоты звукового диапазона - этот процесс называется модуляцией , а также обратное преобразование, которое называется демодуляцией . Отсюда название устройства: модем - мо дулятор/дем одулятор.

Модуляция процесс изменения одного либо нескольких параметров выходного сигнала по закону входного сигнала.

При этом входной сигнал является, как правило, цифровым и называется модулирующим. Выходной сигнал обычно аналоговый и часто носит название модулированного сигнала.

В настоящее время модемы наиболее широко используются для передачи данных между компьютерами через коммутируемую телефонную сеть общего пользования (КТСОП, GTSN - General Switched Telefone Network).

Для осуществления связи один модем вызывает другой по номеру телефона, а тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуя подходящий им обоим режим связи. После этого передающий модем начинает посылать модулированные данные с согласованными скоростью (количеством бит в секунду) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии.


Схема реализации модемной связи

Модемы также можно классифицировать в соответствии с реализованными в них протоколами.

Протокол - это набор правил, управляющих информационным обменом взаимодействующих устройств.

Все протоколы, регламентирующие те или иные аспекты функционирования модемов, могут быть отнесены к двум большим группам: международные и фирменные.

Протоколы международного уровня разрабатываются под эгидой Сектора стандартизации Международного союза электросвязи (ITU-T - International Telecommunications Union - Telecommunications) и принимаются им в качестве рекомендаций. Все рекомендации ITU-T относительно модемов относятся к серии V. Фирменные протоколы разрабатываются Отдельными компаниями - производителями модемов, с целью преуспеть в конкурентной борьбе. Часто фирменные протоколы становятся стандартными протоколами де-факто и принимаются частично либо полностью в качестве рекомендаций ITU-T, как это случилось с рядом протоколов фирмы Microcom. Наиболее активно разработкой новых протоколов и стандартов занимаются такие известные фирмы, как AT&T, Motorolla, U. S. Robotics, ZyXEL и другие.

Типы модемов

В настоящее время выпускается огромное количество всевозможных модемов, начиная от простейших, обеспечивающих скорость передачи около 300 бит/сек, до сложных факс-модемных плат, позволяющих вам послать с вашего компьютера факс или звуковое письмо в любую точку мира.

Рассмотрим только так называемые hayes-совместимые модемы. Эти модемы поддерживают разработанный фирмой Hayes набор АТ-команд управления модемами. В настоящее время такие модемы широко используются во всем мире для связи персональных компьютеров через телефонные линии.

Аппаратно модемы выполнены либо как отдельная плата, вставляемая в слот на материнской плате компьютера, либо в виде отдельного корпуса с блоком питания, который подключается к последовательному асинхронному порту компьютера.

Первый из них называется внутренним модемом, а второй - внешним .

Внутренние модемы , как правило, сильнее подвержены влиянию помех и менее устойчивы в работе. К тому же они имеют довольно неприятное свойство "подвисать" и вывести их из этого состояния можно лишь кнопкой RESET компьютера. Hо у них есть и большой плюс: они не мешают Вам, не занимая место на Вашем рабочем столе и, кроме того, получают питание по шине компьютера. Кроме того, у них есть возможность хранения каких-либо данных при выключении питания компьютера (аналогично CMOS компьютера).

Внешние модемы удобнее тем, что Вы всегда можете по лампочкам индикации состояния модема определить: чем он занят в данный момент. Кроме того, они менее подвержены влиянию помех.

Модемы могут работать в синхронном и асинхронном режиме. Кроме того, есть дуплексный и полудуплексный режимы. Их отличие в том, что в полудуплексном режиме передача в один момент времени идет лишь в одном направлении, в то время как в дуплексном режиме передача осуществляется в обоих направлениях одновременно.

Стандарты факсимильной связи

Согласно рекомендациям Сектора стандартизации Международного союза электросвязи (ITU-T - International Telecommunications Union - Telecommunications) в зависимости от используемого вида модуляции различают факсы четырех групп. Первые факсимильные стандарты, относящиеся к группе 1, были основаны на аналоговом методе передачи информации. Страница текста факсами группы 1 передавалась за 6 минут. Стандарты группы 2 усовершенствовали эту технологию в направлении увеличения скорости передачи, в результате чего время передачи одной страницы сократилось до 3 минут.

Радикальное отличие факсаппаратов группы 3 от более ранних заключается в полностью цифровом методе передачи со скоростями до 14400 бит/с. В результате, применяя сжатие данных, факс группы 3 передает страницу за 30-60 с. При ухудшении качества связи факсы группы 3 переходят в аварийный режим, замедляя скорость передачи. Согласно стандарту группы 3 возможны две степени разрешения: стандартное, обеспечивающее 1728 точек по горизонтали и 100 точек/дюйм по вертикали; и высокое, удваивающее количество точек по вертикали, что дает разрешение 200х200 точек/дюйм и вдвое уменьшает скорость.

Факсимильные аппараты первых трех групп ориентированы на использование аналоговых телефонных каналов КТСОП.

Стандарт группы 4 предусматривает разрешение до 400х400 точек/дюйм и повышение скорости при более низком разрешении. Факсы группы 4 дают разрешение очень высокого качества. Однако, они нуждаются в высокоскоростных каналах связи, которые могут предоставить сети ISDN, и не могут работать через каналы КТСОП.

Модем (МОдулятор-ДЕМодулятор) - устройство преобразования последо­вательных цифровых сигналов в аналоговые и наоборот. Организации по стан­дартизации используют общепринятые аббревиатуры АПД (DCE) для обозна­чения модема и ООД (DTE) для обозначения ЭВМ, терминала или любого другого устройства, подключенного к модему. Модем имеет два интерфейса (рис. 2.31): интерфейс между DCE и аналого­вой линией; многопроводный цифровой интерфейс между DCE и DTE.

Двухточечный канал. Простейшей сетью с использованием модемов, яв­ляется двухточечный канал, в котором два модема соединены («точка-точ­ка») одной линией связи (рис. 2.32). Дискретный канал соединяет DTE с DTE. Линия соединяет DCE с DCE. Дискретный канал состоит из линии и двух модемов (DCE). При скорости передачи до 20 кбит/с используют интерфейс V.24/V.28 (RS-232C), осуществляемый с помощью 25- или 9-контактного гнез­дового разъема. При скоростях передачи от 48 до 168 кбит/с необходимы широкополосные модемы, работающие с интерфейсом V.35. При скоростях до 20 кбит/с может быть использована любая из следующих аналоговых теле­фонных линий связи:

4-проводная 2-точечная выделенная линия; 4-проводная многоточечная выделенная линия; 2-проводная 2-точечная выделенная линия; 2-проводная 2-точечная коммутируемая линия (связь путем набора номе­ра через КТСОП); 4-проводная 2-точечная коммутируемая линия, организуемая путем ком­мутации двух отдельных двухпроводных соединений через КТСОП. Стандарты телефонных каналов как производные от стандартного канала КТСОП тональной частоты (ТЧ) представлены в табл. 2.10.

Режимы работы модемов. Асинхронный. Данный режим реализуется асинхронными модемами, такие модемы являются низкоскоростными и рабо­тают в режиме асинхронной стартстопной позначной передачи. Асинхронные модемы не генерируют сигналов синхронизации и могут работать с любой ско­ростью передачи в пределах установленного для них диапазона скоростей. Синхронный. В этом режиме данные передаются блоками, а модем гене­рирует сигналы синхронизации. Модемы, реализующие только синхронный ре­жим, называются синхронными модемами. Асинхронно-синхронный. Такой режим реализуется асинхронно-синхрон­ными модемами, которые могут осуществлять как синхронную, так и асинх­ронную передачу. Модем удаляет стартстопные биты перед передачей и вос­станавливает их после приема. Модемы этого типа генерируют сигналы синхронизации и имеют встроенный асинхронно-синхронный преобразователь. Асинхронно-синхронные и синхронные модемы работают только с фиксиро­ванными скоростями передачи. При выборе модема важное значение имеет тип связи, обеспечиваемый комбинацией модема с линией.

Любой модем, работающий с 4-проводной 2-точечной линией, использует одну пару для передачи, а вторую для приема и, следовательно, может работать в дуплексном режиме. Модемы, работающие с 4-проводной многоточечной линией работают только в полудуплексном ре­жиме. Модемы, имеющие только синхронный режим, работают на 4-провод­ной 2-точечной некоммутируемой линии, либо через КТСОП, при этом одно коммутируемое соединение обеспечивает полудуплексный режим, а двойное коммутируемое соединение - дуплексный режим. Асинхронно-синхронные модемы работают на 2-проводных линиях (либо выделенных, либо коммутируемых), и все они могут работать в дуплексном режиме.Совместимость модемов. Передачу данных по телефонным сетям опи­сывают рекомендации серии V Международного телекоммуникационного со­юза (Сектор технических стандартов) - ITU-T. Проверкой совместимости яв­ляется проверка номера серии V, указанного фирмой-изготовителем в спецификациях модема. Классификация рекомендаций серии V приведена на рис. 2.33.


Модем может работать в двух режимах: командном и передачи данных. Командный режим модема, как правило, устанавливается: при включении питания; при первоначальной инициализации модема; после неудачной попытки соединения с удаленным модемом; при прерывании с клавиатуры нажатием комбинации клавиш «положить труб­ку» (чаще всего); при выходе из режима передачи данных через ESCAPE-последовательностъ. В командном режиме весь поток данных, поступающий в модем через ин­терфейс V.24/V.28, воспринимается им как команда. Режим передачи данных (on-line) устанавливается после посылки модемом сообщения CONNECT в случаях: при удавшейся попытке установления связи с удаленным модемом; при выполнении модемом самотестирования. В режиме передачи данных поток данных, поступающий в модем из DTE транслируется с преобразованием в линию, а поток данных из линии трансли­руется с обратным преобразованием в интерфейс с DTE. Функциональные режимы модема. Модем всегда находится в одном из двух функциональных режимах (за исключением периодов, когда он переходит из одного режима в другой): командном (локальном) и в режиме асинхронного соединения (ON LINE). Схема переходов модема представлена на рис. 2.34. При включении питания модем инициализирует свои параметры в соответствии с конфигурацией, записанной в энергонезависимой памяти, и переходит в асин­хронный командный режим. Только в этом режиме модем воспринимает АТ- команды. По Z-команде модем восстанавливает свою рабочую конфигурацию


из энергонезависимой памяти и возвращается в командный режим, «^-коман­да восстанавливает конфигурацию по профайлу фирмы-изготовителя (установ­ка по умолчанию) и возвращается в командный режим. Модем «поднимает трубку» в режиме автоответа: а) при поступлении А-команды; б) автоматически при S1 = SO, когда счетчик поступивших звонков (вызо­вов) становится равным числу, установленному для ответа; в) при поступлении команды набора номера, когда строка вызова заканчи­вается R. Функции цепей обмена 103, 104, 109 V.24. Рассмотрим функции цепей обмена, связанные с передачей и приемом данных: 103 (2) TxD (передаваемые данные) к DCE; 104 (3) RxD (принимаемые данные) к DTE; 109 (8) CD (детектор принимаемого линейного сигнала) к DTE. Входной поток последовательных данных, поступающих в модем через цепь 103, преобразуется модулятором в модулированный аналоговый сигнал для вывода его в линию (рис. 2.35). На другом конце линии демодулятор удаленно­го модема принимает модулированный линейный сигнал и преобразует его в поток последовательных данных для вывода через цепь приема данных 104.


При обнаружении модулированной несущей частоты демодулятором цепь 109 переходит из состояния ВЫКЛ в состояние ВКЛ. При этом между моментом обнаружения несущей и моментом изменения состояния цепи обмена 109 вно­сится задержка, известная как задержка «включения» обнаружения несущей. Существует также задержка «выключения» обнаружения несущей, возникаю­щая при выключении несущей на другом конце линии. Цепь 109 во внутренней схеме модема необходима для фиксации цепи обмена приема данных 104 (дан­ные принимаются только при включенном состоянии цепи 109). Задержка вклю­чения сигнала CD и фиксация цепи приема данных обеспечивают защиту от кратковременных выбросов линейных шумов, имитирующих ложные сигналы в цепи приема данных 104.

Итак, модемы и модуляция-демодуляция...

Понятие "модем" является сокращением от известного компьютерного термина модулятор-демодулятор. Модем - это устройство, которое преобразовывает цифровые данные, исходящие из компьютера, в аналоговые сигналы, которые могут передаваться по телефонной линии. Все это дело называется модуляцией. Аналоговые сигналы затем вновь преобразовываются в цифровые данные. Это дело называется демодуляцией.

Схема весьма простая. В модем из центрального процессора компьютера поступает цифровая информация в виде нулей и единиц. Модем анализирует эту информацию и преобразовывае.т ее в аналоговые сигналы, которые и передаются через телефонную линию. Другой модем получает эти сигналы, преобразовывает их опять в цифровые данные и посылает эти данные назад в центральный процессор удаленного компьютера.

Modulation type (Тип модуляции), которая позволяет выбирать частотную или импульсную модуляцию. На всей территории России используется импульсная модуляция.

Аналоговый и цифровой сигналы

Телефонная связь осуществляется через так называемые аналоговые (звуковые) сигналы. Аналоговый сигнал идентифицирует информацию, которая передается непрерывно, в то время как цифровой сигнал идентифицирует только те данные, которые определены на кокретном этапе передачи. Преимущество аналоговой информации перед цифровой есть способность полностью представить непрерывный поток \ информации.

С другой стороны на цифровые данные менее сказываются разного рода шумы и скрежеты. В компьютерах данные хранятся в индивидуальных битах, суть которых есть 1 (начать) или О (закончить).

Если все это дело представить графически, то аналоговые сигналы есть синусоидальные волны, в то время как цифровые сигналы представляются в виде прямоугольных волн. Например, звук является аналоговым сигналом, поскольку звук всегда изменяется. Таким образом, в процессе пересылки информации по телефонной линии, модем получает цифровые данные от компьютера и преобразовывает их в аналоговый сигнал. Второй модем, находящийся на другом конце линии, преобразовывает эти аналоговые сигналы в исходные цифровые данные.

Интерфейсы

Вы можете использовать модем в вашем компьютере с помощью одного из двух интерфейсов. Ими являются:

MNP-5 Последовательный интерфейс RS-232.

MNP-5 Четырехконтактный телефонный кабель RJ-11.

Например, внешний модем подключается к компьютеру посредством кабеля RS-232, а к телефонной линии - с помощью кабеля RJ11.

Сжатие данных

В процессе передачи данных необходима скорость большая, чем 600 битов за секунду (bps или бит\сек). Связано это с тем, что модемы должны собрать биты информации и передавать их далее через более сложный аналоговый сигнал (весьма мудреная схема). Сам процесс подобной передачи допускает передачу многих битов данных в одно и то же время. Понятно, что компьютеры более чувствительны к передаваемой информации и поэтому воспринимают ее намного быстрее, чем модем. Это обстоятельство порождает дополнительное время модема, соответствующее тем битам данных, которые необходимо как-то сгруппировать и применить к ним те или иные алгоритмы сжатия. Так появились два так называемых протокола сжатия:

MNP-5 (протокол передачи, имеющий степень сжатия 2:1).

V.42bis (протокол передачи, имеющий степень сжатия 4:1).

Протокол MNP-5 обычно используется при передаче тех или иных уже сжатых файлов, в то время, как протокол V.42bis применятся даже к несжатым файлам, так как он может ускорять передачу именно таких данных.

Нужно сказать, что при передаче файлов, если протокол V.42bis вообще недоступен, то лучше всего отключить и протокол MNP-5.

Коррекция ошибок

Коррекция ошибок - метод, с помощью которого модемы тестируют пересылаемую информацию на предмет наличия в ней тех или иных повреждений, возникших в течение передачи. Модем разбивает подобную информацию на маленькие пакеты, которые называются фреймами. Передающий модем присоединяет так называемую контрольную сумму к каждому из этих фреймов. Модем получения проверяет, соответствует ли контрольная сумма посланной информации. Если - нет, то фрейм опять пересылается.

Фрейм является одним из ключевых терминов передачи данных. Под фреймом понимают базовый блок данных с заголовком, присоединенной к этому заголовку информацией и данными, которые и завершают сам фрейм. Добавленная информация включает номер фрейма, данные о размере передаваемого блока, синхронизирующие символы, адрес станции, код коррекции ошибок, данные переменного объема и так называемые индикаторы Начало передачи (стартовый бит)/Конец передачи (стоп-бит). Это означает, что фрейм является пакетом информации, который передается ^как одно целое.

Например в Windows 98 в параметрах настройки модема существует опция Stop bits (Стоповые биты), которая позволяет установить количество стоповых битов. Стоповые биты данных являются одной из разновидностей так называемых граничных служебных битов. Столовый бит определяет конец цикла при асинхронной передаче (промежуток времени между передаваемыми символами меняется) данных в кратковременном цикле.

Протоколы MNP2-4 и V.42

Несмотря на то, что коррекция ошибок может замедлять передачу данных на шумных линиях, этот метод обеспечивает надежную связь. Протоколы MNP2-4 и V.42 являются протоколами коррекции ошибок. Эти протоколы определяют, каким образом модемы проверяют данные.

Как и протоколы сжатия данных, протоколы коррекции ошибок должны поддерживаться как передающим, так и принимающим модемами.

Управление потоком или Flow Control

В процессе передачи один модем может пересылать данные намного быстрее, чем другой модем может принимать эти данные. Так называемый метод управления потоком позволяет сообщить принимающему модему информацию о том, чтобы этот модем в какие-то моменты времени приостанавливал прием данных. Управление потоком может быть реализовано как на программном (XON/XOFF - Старт-сигнал/Стоп-сигнал), так и на аппаратном (RTS/CTS) уровнях. Управление потоком на программном уровне осуществляется через пересылку определенного знака. После того, как сигнал получен, передается другой символ.

Например, в Windows 98 в параметрах настройки модема существует опция Data bits (Биты данных), которая позволяет установить информационные биты данных, используемые системой для выбранного последовательного порта. Стандартный набор символов компьютера состоит из 256 элементов (8 бит). Поэтому опция по умолчанию есть 8. Если ваш модем не поддерживает псевдографику (работает только со 128 символами), сообщите об этом выбором опции 7.

Там же в Windows 98 в параметрах настройки модема существует и опция Use flow control (Управление потоком),

которая позволяет определить способ реализации обмена данных. Здесь вы можете исправлять возможные ошибки, возникающие при передаче данных от компьютера в модем. Принятая по умолчанию, установка XON/XOFF означает, что управление потоком данных осуществляется программными методами через стандартные управляющие символы ASCII, которые и посылают в модем команду приостановить/ возобновить передачу.

Управление потоком на программном уровне возможно лишь в том случае, если используется последовательный кабель. Так как управление потоком на программном уровне регулирует процесс передачи посредством пересылки некоторых символов, то может возникнуть сбой или даже окончание сеанса связи. Объясняется это тем, что тот или иной шум в линии может сгенерировать совершенно аналогичный сигнал.

Например, при управлении потоком на программном уровне, бинарные файлы не могут пересылаться, поскольку подобные файлы могут содержать управляющие символы.

Через управление потоком на аппаратном уровне RTS/CTS предана информации осуществляется намного быстрее и безопаснее, чем через управление потоком на программном уровне.

Буфер FIFO и микросхемы универсального асинхронного интерфейса UART

Буфер FIFO чем-то похож на перевалочную базу: пока данные поступают в модем, часть их отправляется в емкость буфера, что дает некоторый выигрыш при переключении с одной задачи на другую.

Например, операционная система Windows 98 поддерживает только микросхемы универсального асинхронного интерфейса (Universal Asynchronous Receiver Transmitter, UART) серии 16550 и позволяет управлять самим буфером FIFO. С помощью флажка Use FIFO buffers requres 16550 compatible UART (Использовать буферы FIFO) вы можете заблокировать (не позволять системе накапливать данные в емкости буфера) или разблокировать (дать возможность системе накапливать данные в емкости буфера) буфер FIFO. Нажав кнопку Advanced, вы обратитесь к диалогу Advanced Connection Settings (Дополнительные параметры соединения), опции которой позволяют настроить соединение вашего модема.

S-регистры

S-регистры находятся где-то внутри самого модема. Именно в этих самых регистрах хранятся установки, которые тем или иным образом могут влиять на поведение модема. В модеме присутствует масса регистров, но только первые 12 из них считаются стандартными регистрами. S-регистры устанавливаются таким образом, что посылают в модем команду ATSN=xx, где N соответствует номеру устанавливаемого регистра, а хх определяет сам регистр. Например, через регистр SO вы можете задать количество звонков для ответа.

Прерывания IRQ

Периферийные устройства связываются с процессором компьютера через так называемые прерывания IRQ. Прерывания являются сигналами, которые заставляют процессор приостановить ту или иную операцию и передать ее выполнение так называемому обработчику прерываний. Когда центральный процессор получает прерывание, он просто приостанавливает процесс и перепоручает прерванную задачу программе-посреднику с именем Interrupt Handler. Все это дело работает независимо от того, была ли обнаружена ошибка в работе того или иного процесса или нет.

Информационный порт связи или просто СОМ-порт

Последовательный порт узнать весьма просто. Вы можете это сделать, просто посмотрев на разъем. СОМ-порт использует 25-контактный разъем с двумя рядами контактов, один из которых длиннее других. При этом, практически все последовательные кабели имеют именно 25-контактные разъемы с обеих сторон (в остальных случаях требуется специальный адаптер).

СОМ-порт (последовательный порт) является портом, через который компьютеры связываются с устройствами, такими как модем и мышь. Стандартные персональные компьютеры имеют четыре последовательных порта.

Порты СОМ 1 и СОМ 2 обычно используются компьютером в качестве внешних портов. По умолчанию все четыре последовательных порта имеют два прерывания IRQ:

СОМ 1 привязан к IRQ 4 (3F8-3FF).

СОМ 2 привязан к IRQ 3 (2F8-2FF).

СОМ 3 привязан к IRQ 4 (3E8-3FF).

СОМ 4 привязан к IRQ 3 (2E8-2EF).

Тут-то как раз и могут возникать конфликты, так как внешние порты других устройств ввода-вывода 1/0 или контроллеров могут использовать те же прерывания IRQ.

Поэтому, назначив модему СОМ-порт или IRQ, вы должны проверить другие устройства на предмет наличия у них

тех же последовательных портов и прерываний.

Нужно сказать, что подключенные к телефонной линии параллельно модему устройства (особенно АОН) могут очень ощутимо ухудшат* качество работы вашего модема. Поэтому рекомендуется подключать телефоны через предназначенное для этого гнездо в модеме. Только в этом случае он будет отключать их от линии при работе.

Флэш-память вашего модема

Флэш-память - постоянная память или ППЗУ (постоянное перепрограммируемое запоминающее устройство), которая может быть стерта и вновь запрограммирована.

Перепрограммированию подлежат все модемы, в названии которых пристуствует строка "V. Everything". Кроме того, модемы "Courier V.34 dual standart" подлежат программной модернизации в случае, если в строке Options в ответе на команду ATI7 присутствует протокол V.FC. Если же в модеме нет этого протокола, то модернизация в "Courier V. Everything" производится заменой дочерней платы.

Существуют две модификации модемов Courier V. Everything - с так называемой частотой супервизора 20.16 MHz и 25 MHz. Для каждого из них существуют свои версии прошивок, и они не являются взаимозаменяемыми, т.е. прошивка от модели 20.16 MHz не подойдет для модели 25 MHz, и наоборот.

Программируемая пользователем память NVRAM

Все настройки модема сводятся к правильной установке значений регистров NVRAM. NVRAM - программируемая пользователем память, сохраняющая данные при выключении питания. NVRAM используется в модемах для хранения конфигурации по умолчанию, загружаемой в RAM при включении. Программирование NVRAM производится в любой терминальной программе с помощью АТ-команд. Полный перечень команд может быть получен из документации на модем, или получен в терминальной программе по командам АТ$ АТ&$ ATS$ AT%$. Запишите в NVRAM фабричные настройки с аппаратным контролем данных - команда AT&F1, затем внесите коррективы по настройке модема в совокупности с конкретной телефонной линией и запишите их в NVRAM по команде AT&W. Дальнейшую инициализацию модема нужно производить через команду ATZ.4.

Прикладное программное обеспечение для передачи данных

Программы для передачи данных позволяют вам соединиться с другими компьютерами, BBS, Internet, Intranet идругими информационными службами. В вашем распоряжении может быть весьма обширный набор подобных программ. Например, в Windows 98 в ваше распоряжение предоставляется весьма неплохой терминальный клиент Hyper Terminal.

Если у вас появились проблемы, связанные с установкой связи с другими модемами

Для начала необходимо оценить характер линии связи. Для этого после удачного сеанса до переинициализации модема введите команды ATI6 - диагностика связи, ATI11 - статистика соединения, ATY16 - амплитудо-частотная характеристика. Полученные данные необходимо записать в файл. После анализа полученных данных необходимо произвести изменения текущей конфигурации и затем записать их в NVRAM по команде AT&W5.

Российские телефонные линии и импортные модемы

Выбор модемов сегодня достаточно велик, и разница в их стоимости весьма значительна. Скорость передачи более 28 800 бит/с на российских телефонных линиях обычно недостижима. Выше 16 900 бит/с можно получить лишь в том случае, если провайдер услуг Internet имеет линии на той АТС, к которой подключен ваш телефон. В других случаях, работа в Internet слишком утомительна, поскольку при типовой (и даже не всегда достижимой) скорости 9 600 бит/с она превращается в сплошное ожидание. Поэтому для устойчивой передачи данных при помехах в телефонной линии нужен высококлассный модем, который стоит не менее 400 долларов США.

Какой модем лучше - внутренний или внешний?

Внутренний модем устанавливается в свободный слот расширения на материнской плате компьютера и подключается к встроенному блоку питания, а внешний представляет собой автономное устройство, соединенное с компьютером через стандартный последовательный порт.

Каждая из конструкций имеет свои достоинства и недостатки. Внутренний модем занимает слот системной шины (а их, как правило, не хватает), следить за его работой трудно из-за отсутствия индикаторов, к тому же описываемые модели принципиально не пригодны для портативных компьютеров типа notebook, имеющих узкопрофильный корпус и в большинстве случаев не обладающих разъемами расширения. В то же время внутренний модем на несколько десятков долларов дешевле внешних аналогов, не занимает места на столе и не создает путаницу проводов. Использование же внешнего модема подразумевает, что в компьютере, к которому он подсоединен, установлены наиболее современные микросхемы управления последовательным портом (UART). Микросхемы UART появились еще в первых ПК, поскольку уже тогда стало ясно, что обмен данными через последовательный порт - слишком медленная и сложная операция и лучше поручить ее специальному контроллеру. С той поры выпущено несколько моделей UART. В компьютерах типа IBM PC и XT, а также в полностью совместимых с ними, использовалась микросхема 8250, в AT ее сменила UART 16450. Большинство компьютеров на базе процесоров i386 и i486 до последнего времени комплектовались контроллером 16550, в котором появились внутренние аппаратные буферы типа "очередь", а сегодня стандартом становится UART 16550A - микросхема, аналогичная предыдущей, но с устраненными недоработками. Отсутствие буферов во всех микросхемах, кроме последней, приводит к тому, что передача данных через последовательный порт на скорости выше 9600 бит в секунду становится неустойчивой (использование MS Windows снижает этот порог до 2400 бит/с).

Если необходимо подключить высокоскоростной внешний модем к компьютеру, использующему устаревшую микросхему UART, следует либо сменить мультикарту, либо добавить специальную карту расширения (что займет один слот шины и лишит внешний модем важнейшего преимущества). У внутренних модемов такая проблема не возникает - они СОМ-порт не используют (точнее, они его содержат). Сейчас у внутренних модемов появляется еще одно преимущество, также связанное со скоростью работы. Согласно спецификации V.42bis, данные при передаче могут быть сжаты примерно в четыре раза, следовательно модем, работающий на скорости 28800 бит/с, должен получать данные из компьютера или отправлять их в него со скоростью 115600 бит/с, что является пределом для последовательного порта ПК. Однако 28800 бит/с - не предел для телефонной линии, где максимум лежит где-то в районе 35000 бит/с, а на цифровых линиях (ISDN) пропускная способность превышает 60000 бит/с. Следовательно, в данной ситуации последовательный порт станет "узким горлом" всей системы, и потенциальные возможности внешнего модема не будут реализованы. Сейчас производители модемов разрабатывают модели, которые могли бы подключаться к более быстродействующему параллельному порту, однако очевидно, что устройства, проданные сейчас, к этому приспособить будет невозможно.

В то же время многие модемы можно модернизировать для работы на больших скоростях, вплоть до способности работать на ISDN. Но все упирается в ограничительный барьер со стороны компьютера, который для внутреннего модема существенно выше 4 Мбайт/с (пропускная способность шины ISA). Кстати, все ISDN-модемы внутренние. Правда, все это будет завтра (а может и послезавтра), а сегодня можно сказать одно: выбирайте устройство того типа, который нравится вам - никаких функциональных различий между внутренними модемами и их внешними аналогами нет.

Какой модем выбрать и как его выбрать

Модем не может быть уникальным. Ваш модем должен быть понят другими модемами. Это означает, что модем должен поддерживать максимальное количество стандартов, то есть исправление ошибок, методы обмена данными и их сжатие. Самый распространенный стандарт - V.32bis для модемов со скоростью обмена 14000 бит/с. Для модемов со скоростью работы 28800 бит/сек стандартизованным протоколом является V.34.

Кроме этого, необходимо подчеркнуть, что модемы, имеющие скорость обмена данными 16800, 19200, 21600 или 33600, не являются стандартными.

Никакая коррекция ошибок не должна быть программной. Все должно быть вшито в модем его производителем.

О внешности и о внутренности. Внешний модем через специальный шнур подключается к вашему последовательному порту. Такой модем, как правило, имеет регулятор громкости, информационные индикаторы, блок питания и другие, иногда полезные прйблуды. Если вы профессионал, то вам должно быть все равно, какой модем выбрать - внутренний или внешний. Обычно, хороший внутренний модем через специальный софт неплохо эммулирует всю наглядность внешнего модема.

Не покупайте чисто импортные модемы. Эти железяки не уживаются на наших древних линиях. Приобретайте только сертифицированные модемы, то есть железо, специально прошитое под наши грязные телефонные станции.

В России такой выбор весьма невелик. Этот рынок забили две компании: ZyXEL из солнечного Тайваня и U.S. Robotics из США. Модемы последней фирмы выбирают профессионалы (Courier), первой - все остальные, то есть все те юзеры, которые выбирают так называемый сверхнадежный протокол ZyCell.

Итак, выбирайте Courier. И, поверьте, это не реклама.

Слово «модем» (modem) происходит от сочетания «модулятор/демодулятор» и используется для обозначения широкого спектра устройств передачи цифровой информации при помощи аналоговых сигналов путем их модуляции — изменения во времени одной или нескольких характеристик аналогового сигнала: частоты, амплитуды и фазы. При этом модулируемый аналоговый сигнал называется несущим (carrier) и обычно представляет собой сигнал постоянной частоты и амплитуды (несущая частота).

Количество модуляций в секунду называется скоростью модуляции и измеряется в бодах (Бод); количество переданной при этом информации измеряется в битах в секунду (бит/с или BPS — Bits Per Second). Одна модуляция может передавать как один бит, так и большее или меньшее их количество. В новых модемных протоколах единица информации, передаваемая за одну модуляцию, называется символом (character). «Модемный» символ может в общем случае иметь любой размер.

Исходный цифровой сигнал подается на модулятор, преобразующий его в серию изменений несущего аналогового сигнала, по линии связи передаваемого демодулятору, который по этим изменениям воссоздает исходный цифровой сигнал. Для получения симметричной двунаправленной линии связи модулятор и демодулятор объединяются в одном устройстве — модеме.

Несмотря на то, что модуляторы/демодуляторы применяются во множестве устройств — сетевых адаптерах, дисководах, CD-рекордерах и т.п., термин «модем» (modem) закрепился для обозначения в основном интеллектуальных модемов для телефонных линий. Такой модем является сложным устройством, в который собственно модулятор и демодулятор входят лишь в качестве основных по смыслу функциональных узлов.

Модемы применяются там, где линия связи не позволяет надежно передавать цифровой сигнал простым изменением амплитуды. Наиболее надежно передаются изменения частоты — частотная модуляция, однако для фиксации такого изменения на приемном конце требуется несколько периодов сигнала, что требует использования несущих частот, значительно бОльших частоты цифрового сигнала. Для увеличения количества информации, передаваемой за одну модуляцию, используются параллельная фазовая и амплитудная модуляции.

Типовая схема организации связи двух цифровых устройств при помощи модемов имеет вид:

DTE1 — DCE1 — Линия связи — DCE2 — DTE2

Аббревиатурой DTE (Data Terminal Equipment — оконечное оборудование передачи данных) в терминологии систем связи обозначаются оконечные цифровые устройства, генерирующие или получающие данные. Аббревиатурой DCE (Data Communication Equipment — оборудование передачи данных) обозначаются модемы. Линия связи между DCE — аналоговая, между DCE и DTE — цифровая.

Если для связи DTE и DCE используется унифицированный цифровой интерфейс, это зачастую дает возможность связать два расположенных рядом DTE прямой цифровой линией — так называемым нуль-модемным кабелем. В случае разнесения DTE на большое расстояние в разрыв вместо нуль-модемного кабеля включается пара модемов и аналоговая линия связи, обеспечивая прозрачное соединение и передачу данных.

Модемы различного типа используются во многих областях связи; в данном FAQ рассматриваются только интеллектуальные модемы для телефонных линий связи, предназначенные для связи между компьютерами и алфавитно-цифровыми терминалами.

Как устроен и работает современный модем?

Практически все современные модемы имеют похожие функциональные схемы, состоящие из основного процессора, сигнального процессора, оперативного запоминающего устройства (ОЗУ, RAM), постоянного запоминающего устройства (ПЗУ, ROM), перепрограммируемого запоминающего устройства (Non-Volatile RAM, NVRAM — неразрушающаяся память с прямым доступом), собственно модулятора/демодулятора, схемы согласования с линией и динамика.

Основной процессор фактически является встроенным микрокомпьютером, отвечающим за прием и выполнение команд, буферизацию и обработку данных — кодирование, декодирование, сжатие/распаковку и т.п., а также за управление сигнальным процессором. В большинстве модемов используются специализированные процессоры на основе типовых наборов микросхем, а в некоторых (US Robotics, ZyXEL) — процессоры общего назначения (Intel, Zilog, Motorola).

Сигнальный процессор (DSP, Digital Signal Processor — цифровой сигнальный процессор) и модулятор/демодулятор занимаются непосредственно операциями с сигналом — модуляцией/демодуляцией, разделением частотных полос, подавлением эха и т.п. В качестве таких процессоров также используются либо специализированные, ориентированные на конкретный набор способов и протоколов модуляции (AT&T, Rockwell, Exar), либо универсальные со сменной микропрограммой (например, TMS), позволяющие впоследствии дорабатывать и изменять алгоритмы работы.

В зависимости от типа и сложности модема основная интеллектуальная нагрузка смещается в сторону DSP или модулятора/демодулятора. В низкоскоростных (300..2400 бит/с) модемах основную работу выполняет модулятор/демодулятор, в скоростных (4800 бит/с и выше) — DSP.

В ПЗУ хранятся программы для основного и сигнального процессоров (firmware). ПЗУ может быть однократно программируемым (PROM), перепрограммируемым со стиранием ультрафиолетом (EPROM) или перепрограммируемым электрически (EEPROM, Flash ROM). Последний тип ПЗУ позволяет оперативно менять прошивки по мере исправления ошибок или появления новых возможностей.

ОЗУ используется в качестве временной памяти при работе основного и сигнального процессоров; оно может быть как раздельным, так и общим. В ОЗУ хранится также текущий набор параметров модема (active profile).

В NVRAM хранятся сохраненные наборы параметров модема (stored profiles), один из которых загружается в текущий набор при каждом включении или сбросе. Обычно имеется два сохраненных набора — основной (profile 0) и дополнительный (profile 1). По умолчанию для инициализации используется основной набор, но есть возможность переключиться на дополнительный. Ряд модемов имеет более двух сохраненных наборов.

Схемы согласования с линией включают разделительный трансформатор для передачи сигнала, оптопару для опознания сигнала звонка (Ring), реле подключения к линии («поднятия трубки», off-hook) и набора номера, а также элементы создания нагрузки в линии и защиты от перенапряжений. Вместо реле могут применяться бесшумные электронные ключи. В некоторых модемах применяются дополнительные оптопары для контроля напряжения линии. Подключение к линии и набор номера могут выполняться как одним, так и раздельными ключами.

На динамик (speaker) выводится усиленный сигнал с линии для слухового контроля ее состояния. Динамик может быть включен на время набора номера и соединения, во время всего соединения, а также отключен совсем.

Внешние модемы дополнительно содержат схему формирования питающих напряжений (обычно +5, +12 и -12 В) из одного переменного (реже — постоянного) напряжения источника питания. Кроме этого, внешние модемы содержат интерфейсные цепи для связи с DTE.

Чем различаются внутренние и внешние модемы?

Внутренний модем выполняется в виде платы расширения, размещаемой в корпусе компьютера, подключаемой напрямую к системной шине и использующей общий источник питания компьютера. Внешний модем выполняется в виде отдельного устройства, подключаемого к одному из портов — последовательному или параллельному, и питаемый от собственного сетевого источника. Внешний модем также имеет индикаторы режимов работы в виде набора светодиодов или жидкокристаллического дисплея.

Достоинства внутреннего модема:

Недостатки внутреннего модема:

Достоинства внешнего модема:

Недостатки внешнего модема:

Как организуется передача данных посредством модемов?

Передача данных организуется на основе набора протоколов, каждый из которых устанавливает правила взаимодействия связывающихся устройств. Протоколы, используемые в модемах, делятся на четыре основные группы:

Первые три группы относятся только к связи DCE-DCE, последняя — только к связи DCE-DTE.

Первая группа протоколов устанавливает правила вхождения модемов в связь, ее поддержания и разрыва, параметры аналоговых сигналов, правила кодирования и модуляции. Эти протоколы непосредственно относятся к сигналам, передаваемым по межмодемной аналоговой линии связи. Соединение двух модемов возможно только в случае поддержки ими каких-либо общих или совместимых протоколов этой группы. В семиуровневой иерархии протоколов связи OSI эта группа протоколов имеет уровень 1 (физический) и формирует канал цифровой связи в реальном времени, однако не защищенный от ошибок передачи.

Протоколы физической связи могут быть симплексными (simplex) — реализующими в каждый момент времени передачу только в одну сторону, и дуплексными (duplex) — с одновременной двунаправленной передачей. Чаще всего применяются дуплексные протоколы, которые могут быть симметричными, когда скорости передачи в обоих направлениях равны, и несимметричными, когда скорости различаются. Несимметричный дуплекс применяется для повышения скорости передачи в одну сторону за счет ее снижения в обратную сторону, когда поток передаваемых данных имеет выраженную асимметрию.

Для определения направления передачи в физическом канале используются понятия вызывающего (инициирующего соединение) и отвечающего модемов; направление передачи определяется со стороны вызывающего модема.

Вторая группа устанавливает правила обнаружения и коррекции ошибок, возникающих на этапе передачи с помощью протоколов первой группы. Эти протоколы имеют дело только с цифровой информацией; для проверки целостности информации она разделяется на блоки (пакеты), снабжаемые контрольными избыточными кодами (CRC — Cyclic Redundancy Check). При несовпадении контрольного кода на приемном конце переданный пакет считается ошибочным и запрашивается его повторная передача. Эта группа протоколов формирует из ненадежного физического канала надежный (защищенный от ошибок) канал более высокого уровня, однако это приводит к потере связи в реальном времени и дается ценой определенных накладных расходов. В модели OSI эта группа соответствует уровню 2 (канальный).

Третья группа устанавливает правила сжатия передаваемых данных путем уменьшения их избыточности. При этом на передающем конце происходит их анализ и упаковка, а на приемном — распаковка в исходный вид. Сжатие позволяет повысить скорость передачи сверх физической пропускной способности канала за счет уменьшения объема реально передаваемых данных. Реализация сжатия также требует некоторых накладных расходов на анализ информации и формирование пакетов; в случае неэффективного сжатия скорость передачи может оказаться ниже скорости физического канала.

Последняя группа протоколов задает правила взаимодействия DCE и DTE. Они подразделяются на физические, касающиеся кабелей, разъемов и сигналов взаимодействия, и информационные, относящиеся к формату и смыслу передаваемых сообщений. Посредством этих протоколов реализуется общение DTE и DCE во время подготовки к вхождению в связь, организации вызова и ответа, а также в процессе самого обмена данными.

Какие протоколы модуляции используются в модемной связи?

Большинство используемых протоколов стандартизировано Международным Союзом Связи (International Telecommunications Union — ITU), ранее носившим название Международный Консультативный Комитет по Телеграфии и Телефонии, МККТТ (Comite Consultatif Internationale de Telegraphie et Telephonie — CCITT). Отдел ITU, относящийся к телефонной связи, обозначается ITU-T.

Из протоколов физической связи наибольшее распространение получили следующие:

V.34 (ITU-T). Протокол последнего поколения со скоростью передачи до 28800 бит/с, промежуточные скорости — 2400..26400 бит/с с дискретностью 2400. Принятию стандарта ITU предшествовали протоколы ряда производителей под названиями V.Fast и V.FC. Модуляция — 256-позиционная КАМ с дополнительным временнЫм кодированием, при котором решение на приемном конце принимается по двум смежным состояниям сигнала. В связи с увеличением размера передаваемого за одну модуляцию элемента данных вместо понятия «бод» используется «символ в секунду»; в данном случае размер символа равен 8 битам, или одному байту. Соответственно, введено понятие «символьная скорость» — 2400, 2743, 2800, 3000, 3200, 3429 симв/с. Две последние скорости формально не укладываются в стандартную полосу пропускания телефонного тракта, однако ряд телефонных линий реально обладает нужной пропускной способностью.

V.34bis (ITU-T). Расширение V.34 до скорости 33600 бит/с с промежуточной скоростью 31200 бит/с.

V.90 (ITU-T). Несимметричный, «полуцифровой» скоростной протокол, позволяющий поднять скорость передачи в одну сторону до 56 кбит/с. Стандарту предшествовали протоколы x2 (USR/3COM) и k56flex (Rockwell/Lucent). Данная группа протоколов известна также под названиями V.PCM и 56k. Протоколы 56k реализуются только на несимметричных линиях, когда с одной стороны устанавливается блок прямого сопряжения («цифровой модем») с подключением к цифровому каналу T1/E1, ISDN и др., а с другой — аналоговый модем с поддержкой V.90. При таком соединении сигнал со стороны цифрового канала большую часть расстояния передается в неизменной цифровой форме, и только от абонентского комплекта до обычного модема — в аналоговой. Поскольку преобразование из цифровой формы в аналоговую сопряжено с меньшими потерями информации, чем обратно, предельная пропускная способность цифрового канала (64 кбит/с) понижается только до 56 кбит/с (реально обычно до 45-53 кбит/с). В обратную сторону предельной является скорость 33.6 кбит/с.

Протоколы 56k ориентированы в первую очередь на централизованные системы связи — провайдеры Internet (ISP — Internet Service Provider), банковские и информационные сети и т.п., где преобладает передача информации от центра к абоненту (download), а передача от абонента к центру (upload) встречается гораздо реже.

Что такое CPS ?

Это исторически укоренившаяся единица измерения скорости передачи данных между программами (Characters Per Second — символов в секунду), которая обозначает скорость передачи «компьютерных» (восьмибитовых) символов (байтов) между оконечными программами. «Модемная» скорость в BPS для этого не подходит, так как обозначает скорость передачи данных между модемами в физическом канале, а на реальную скорость передачи по полному каналу (между программами) влияют коррекция ошибок, сжатие данных, тонкости аппаратных и системных протоколов, настройки портов и т.п.

CPS — чисто «компьютерная» единица, не имеющая отношения к «модемным» символам модуляции, введенным в V.FC, V.34 и более поздних протоколах.

Как работают протоколы коррекции ошибок?

Практически все протоколы коррекции ошибок основаны на повторении передачи ошибочного блока (кадра) по запросу от принимающего модема. Каждый блок снабжается контрольной суммой, которая проверяется на приемном конце, и блок не отдается потребителю до тех пор, пока не будет принят в правильном виде. Это порождает возможные задержки передачи, однако практически гарантирует безошибочную передачу данных без дополнительного контроля более высокого уровня.

Для увеличения эффективности передачи протоколы коррекции устанавливают соединение в синхронном режиме, в котором передаваемые по физическому каналу биты уже не делятся на байты, а оформляются в пакеты большего размера. За счет этого одна и та же пара модемов по чистому качественному каналу на протоколах с коррекцией чаще всего передает данные быстрее, нежели на низкоуровневых асинхронных протоколах без коррекции.

Наиболее распространенные протоколы коррекции — MNP (Microcom Networking Protocol) уровня 4 (MNP4), введенный фирмой Microcom и ставший стандартом де-факто, и включающий его более поздний V.42, называемый также LAP-M (Link Access Procedure — Modems), введенный ITU-T. Последний более эффективен, поэтому при установлении связи модемы в первую очередь пытаются использовать V.42, а при неудаче — MNP4.

И в MNP4, и в V.42 отвергание (reject) принимающим модемом ошибочного кадра может быть как индивидуальным, так и включать в себя все последующие кадры, которые к этому моменту успел передать удаленный модем. Чаще всего реализуется вторая схема, как более простая, однако в ряде моделей используется выборочный повтор кадров — Selective Reject (SREJ), заметно повышающий скорость передачи на каналах с частыми ошибками связи.

Еще более позднее расширение MNP уровня 10 ориентировано на каналы с быстро меняющимися параметрами (радиочастотные, сотовые) и оптимизировано для снижения потерь от таких изменений.

Кроме исправления ошибок, протоколы коррекции могут передавать ряд служебных сообщений между модемами. В основном используется два типа таких сообщений — сигнал временного перерыва в передаче (Breаk), передаваемый между компьютером и модемом в виде длинной серии без стопового бита в конце, и сигнал разрыва связи (Link Disconnect), передаваемый одним модемом другому при прекращении связи (многократная неудача приема блока, падение DTR, команда ATH и ей подобные). Первое сообщение позволяет передавать между компьютерами «несимвольный» сигнал, который часто называется сигналом типа «внимание», а второе — облегчить и ускорить процедуру разрыва связи, чтобы удаленный модем не пытался ее восстановить.

Как работают протоколы сжатия данных?

Сжатие данных выполняется путем обнаружения и частичного устранения избыточности информации во входном потоке передающего модема, после чего закодированные блоки данных уменьшенного размера направляются принимающему модему, который восстанавливает их исходный вид. Принцип действия алгоритмов сжатия во многом похож на работу архиваторов.

Наиболее распространены протоколы сжатия MNP5, введенный фирмой Microcom, и V.42bis, введенный ITU-T. Алгоритм MNP5 основан на относительно простых методах сжатия, его эффективность в лучших случаях редко превышает 2. V.42bis основан на популярном методе сжатия LZW, применяемом в большинстве архиваторов, и в удачных случаях обеспечивает сжатие до четырех раз. В модемах, где реализованы оба протокола, предпочтение при соединении по умолчанию отдается V.42bis.

В протоколе MNP5 алгоритм сжатия не отключается, и протокол всегда пытается кодировать поступающие данные. Это часто приводит к тому, что данные, не поддающиеся сжатию, за счет кодирования увеличиваются в размере, и эффективная скорость передачи падает. Протокол V.42bis следит за эффективностью сжатия потока, и временно прекращает работу, если сжатие не достигает своих целей. Если в модеме реализован только протокол MNP5, рекомендуется отключать его для сеансов, в которых преобладают данные с низкой избыточностью (архивы, дистрибутивы, изображения, звук, видео и т.п.), и включать — для сеансов передачи текстов, HTML-страниц, непакованных баз данных и т.п.

Алгоритм сжатия в модеме всегда имеет дело с непрерывным потоком данных, из-за чего сжатию подвергаются лишь отдельные, относительно небольшие и независимые фрагменты потока, а это не позволяет достичь столь же высокой степени сжатия, как в архиваторах. Например, текст на русском языке большинством архиваторов сжимается в 4-5 раз, в то время как реальная эффективность лучших модемных протоколов сжатия не превышает 2-3, а более высокая степень достигается лишь при передаче повторяющихся серий (таблиц, непакованных баз данных с высокой избыточностью и т.п.).

Каким образом происходит общение DTE с модемом?

Практически все телефонные модемы общего назначения имеют унифицированный набор команд, предложенный и закрепленный фирмой Hayes, по имени которой назван и сам набор. Другое название набора — AT-набор (AT-set), поскольку большинство команд начинается с префикса AT (ATtention — внимание). Ряд специализированных модемов имеет собственные наборы команд, несовместимые с Hayes и между собой.

Различаются два основных режиме работы модема: режим команд и режим данных. В первом режиме DTE передает модему команды и получает сообщения, во втором модем прозрачно передает данные между DTE и удаленным модемом.

В командном режиме процессор Hayes-модема постоянно следит за потоком битов от DTE и пытается обнаружить сочетание «AT» или «at», переданное на одной из допустимых скоростей. Как только такое сочетание обнаружено — процессор фиксирует данную скорость и переходит в режим ввода командной строки, записывая получаемые символы во внутренний буфер, объем которого обычно равен 40 символам. Пробелы в командах игнорируются, если это не оговорено особо для отдельных команд. Неправильно набранные символы можно стирать символом «забоя» (по умолчанию — BS, код 08 hex), однако префикс AT в буфер не заносится, поэтому невозможно ни его стирание, ни отмена режима ввода командной строки.

Командный режим модема изначально был ориентирован на ручной ввод команд с простого терминала, поэтому способ ввода и структура команд разработаны в «человеческой» форме. По той же причине модем в командном режиме по умолчанию возвращает (эхо-режим) каждый полученный от DTE символ, позволяя визуально контролировать правильность набора команд. В режиме данных полученные символы по умолчанию не возвращаются.

Большинство команд Hayes-модемов обозначаются буквой — «A», «P», или символом с буквой — &C, %T. Команда может иметь параметр (обычно числовой) — X1, &D2. Если числовой параметр опущен, он полагается нулевым. Ряд команд имеет синтаксис, не подчиняющийся этим правилам.

В одной командной строке может быть записана как одна, так и несколько команд; исключение составляют случаи, когда очередная команда приводит к смене режимов, делающей следующие за ней команды бессмысленными. Выполнение каждой команды происходит после завершения ее выделения из командной строки и синтаксического разбора. В случае успешного выполнения командной строки выдается сообщение OK; перед ним могут быть выданы строки дополнительной информации, запрошенные введенными командами. При обнаружении ошибки выдается сообщение ERROR и обработка строки прекращается, но все предшествующие правильные команды к этому моменту будут выполнены.

Примеры командных строк:

Каждая строка AT-команд завершается символом CR (код по умолчанию — 0D hex, клавиша Enter). После получения CR процессор модема анализирует командную строку и по возможности выполняет каждую команду в ней, после чего выдает сообщение о подтверждении, ошибке или запрошенную командами информацию. Диагностические сообщения Hayes-модемов по умолчанию выдаются в текстовой форме, но могут выдаваться и в виде трехзначных десятичных кодов.

AT-команды служат для получения сведений о состоянии модема, изменения режимов его работы, набора номера, установки/завершения связи и тестирования модема и линии. Для изменения основных параметров имеются отдельные команды, прочие параметры хранятся в так называемых S-регистрах, принимающих значения от 0 до 255. Значения S-регистров могут использоваться как полностью, так и раздельно по полям и отдельным битам. На самом деле все или большая часть параметров хранятся в S-регистрах, а отдельные команды управления ими введены исключительно для удобства.

За редкими исключениями, команды изменения состояния действуют только на текущий набор параметров, теряющий свои значения при отключении или сбросе модема. Содержимое текущего набора может быть записано в один из сохраненных наборов в NVRAM; кроме этого, ряд команд может непосредственно изменять содержимое NVRAM.

Кроме командных строк, начинающихся с AT, Hayes-модемы поддерживают также команду «A/». Она повторяет последнюю введенную командную строку; исполнение начинается сразу после получения символа «/», кода CR не требуется.

При выполнении команд соединения (вызов, ответ, тестирование) происходит соединение модемов и переход в режим данных, сопровождаемый выдачей сообщения CONNECT. В режиме данных все поступающие символы прозрачно пересылаются модемом. Исключение составляет так называемая Escape-последовательность из трех одинаковых символов (по умолчанию — «+»), перед и после которой должны быть выдержаны охранные интервалы (по умолчанию — 1 сек). При получении такой последовательности модем переходит в командный режим, не разрывая соединения; впоследствии можно как вернуться в режим данных, так и разорвать соединение любой из подходящих команд.

Какие основные команды используются в Hayes-модемах?

Модемы, поддерживающие коррекцию ошибок и сжатие данных, почти всегда имеют группу команд »\» и «%»:

Какова структура команды набора номера?

Команда набора номера D имеет параметр в виде строки последовательно интерпретируемых символов, управляющих процессом набора номера:

Какова структура команды работы с S-регистрами?

Команда работы с S-регистрами S имеет две формы:

Какие ответы модем может давать на командные строки?

Основной набор ответов, определенный для всех Hayes-модемов:

Дополнительные ответы, введенные в некоторых расширениях:

Сообщение CONNECT без параметров выдается либо в том случае, когда запрещены расширенные сообщения (X0), либо установлено соединение на скорости 300 бит/с.

Сообщение RING выдается модемом после завершения каждого вызывного сигнала (интервал около 5 сек). Сообщения RINGING/RINGBACK выдаются не всеми типами модемов.

Сообщение VOICE поддерживается только некоторыми модемами и выдается в том случае, когда в линии обнаружен сигнал, который нельзя отнести к какому-либо известному классу линейных или модемных сигналов. В этом случае считается, что абонент ответил голосом, и после выдачи сообщения модем отключается от линии.

Что представляет собой факс-модем?

Это модем со встроенными факсовыми протоколами установления связи, модуляции и передачи изображений. Такой модем может работать как с обычными модемами посредством протоколов передачи данных, так и с факс-машинами через протоколы передачи изображений.

Функциональность факс-модема определяется его классом: 1, 2 или 2.0. Класс 1 предполагает поддержку только протоколов физического уровня, все остальные процедуры выполняет управляющая программа компьютера. Класс 2 вносит бОльшую часть интеллектуальных функций в сам модем, однако является «промежуточным» стандартом де-факто. Класс 2.0 добавляет функции кодирования и декодирования изображений, содержит ряд изменений, и утвержден в качестве официального стандарта.

Классы факс-модемов не совместимы снизу вверх (функции младших классов не поддерживаются в старших), а модемы старших классов чаще всего не поддерживают младшие классы факсовых команд.

Программы, ориентированные на работу с факс-модемами (BitFax, BGFax, WinFax и др.), позволяют передавать и принимать избражения в различных графических форматах (BMP, GIF, TIFF, JPG и т.п.). Кроме этого, большинство программ, а также встроенные факс-службы современных ОС, позволяют передавать документы любого типа, для чего в системе устанавливается фиктивное устройство класса «принтер», при «печати» документов на которое они преобразуются в чистое изображение и отправляются факс-модемом.

Что представляет собой голосовой модем?

Это модем с возможностью голосового (voice) контакта между абонентами. Первые модемы с поддержкой голоса имели только микрофонный и телефонный усилитель с возможностью подключения наушников с микрофоном, что добавляло к модему функции обычного телефонного аппарата. Современные модемы, кроме этого, способны одновременно передавать по каналу данные и голос, отчего эта группа модемов имеет общее обозначение SVD (Simultaneous Voice and Data), и часто позволяет делать это при помощи подключенного к модему телефонного аппарата.

Различаются две основные технологии передачи голоса вместе с данными:

Что такое Soft-modem?

Так называют класс модемов, часть «интеллекта» которых переносится из самого модема в основной компьютер. Повышение быстродействия центральных процессоров и появление специализированных команд для обработки сигналов (MMX) позволяют передать часть функций модемной аппаратуры операционной системе основного компьютера.

Встречаются также три наиболее распространенные разновидности soft-модемов:

Как первоначально настроить новый модем?

Для внутреннего модема прежде всего необходимо установить номер COM-порта и линии IRq, которые он будет использовать. Подавляющее большинство внутренних модемов видны компьютеру, как дополнительный COM-порт, за исключением Soft-модемов с полностью программным управлением, которые могут иметь произвольный интерфейс.

При установке номера порта нужно иметь в виду, что на всех современных системных платах имеется встроенный контроллер ввода/вывода, поддерживающий два последовательных порта, по умолчанию обычно работающих как COM1 и COM2. В BIOS Setup для каждого из этих портов может быть также режим Auto, в котором порт включается только в случае наличия свободных стандартных адресов и линий IRq. Например, если для второго системного порта задано Auto и в плату установлен внутренний модем, настроенный, как COM2, BIOS в зависимости от типа и версии может либо перенести второй системный порт на COM4, либо отключить его совсем.

Если два порта настроены на одну линию IRq (IRq sharing), то возможна работа только с одним из них в каждый конкретный момент времени. При попытке активизировать оба порта не сможет работать ни один, кроме случая, когда оба порта обслуживает специализированная программа, которая в состоянии разобраться, какой порт генерирует какое прерывание. При настройке двух портов на один и тот же адрес оба будут неработоспособны.

Внутренние модемы с интерфейсом Plug & Play в специальной настройке не нуждаются; может потребоваться разве что установка перемычками режима PnP, если модем допускает также и прямое конфигурирование адреса и IRq.

На внешнем модеме может потребоваться установка режимов работы переключателями, если они есть.

Проверить правильность работы порта модема можно при помощи любой терминальной программы (Telix, Terminate, Telemate — для DOS, или стандартный Hyper Terminal (Программа Связи) — для Windows 95). На ввод строки AT&F модем обязательно должен дать ответ OK. Можно использовать и строку ATZ, однако в том случае, если в параметрах по умолчанию установлен режим Q1, модем не даст ответа OK на эту строку.

Убедившись, что модем работает, необходимо сформировать набор параметров по умолчанию. Для этого вводится команда &Fn с нужным номером конфигурации, описанной в руководстве к модему; крайне желательна конфигурация с аппаратным (hardware, RTS/CTS) управлением потоком данных.

Если некоторые параметры желательно иметь отличными от заводской конфигурации, их нужные значения задаются после команды &Fn. После настройки всех параметров вводится команда &W, которая записывает сформированный набор в качестве набора по умолчанию с номером 0. Впоследствии, при каждом включении модема или после выполнения команды Z, будет устанавливаться этот набор параметров.

Для того, чтобы программы правильно отображали скорость установленного соединения, необходимо задать модему режим вывода в строке CONNECT реальной скорости вместо скорости модем-DTE. Для этого служит команда Wn; также могут потребоваться и другие команды (например, \Vn), которые нужно найти в описании. Проверить формат строки CONNECT на большинстве модемов можно командой &T1, устанавливающей тестовое соединение по типу Local Analog Loopback.

Что такое строка инициализации и зачем она нужна?

Строкой инициализации называют последовательность команд, приводящую модем в заранее известное состояние. Обычно такая строка начинается с одной из команд &Fn, устанавливающей заводские установки, следом за которой идут команды установки нужных режимов.

Если терминальная программа поддерживает несколько строк инициализации, последовательно выводимых в модем, удобно начинать последовательность с команды Z. В этом случае в активный набор параметров по умолчанию записываются наиболее общие установки для всех применений модема на данной станции.

В том случае, если для всех применений модема достаточно одного набора параметров, наиболее удобным будет запоминание его в NVRAM. Строка инициализации в этом случае сводится к одной команде Z.

Как можно оптимизировать настройку модема и управляющей программы?

В общем случае оптимальная настройка модема и программы весьма сложна и неоднозначна, однако в большинстве случаев можно выделить несколько наиболее типичных моментов:

Эффективность сжатия данных. По умолчанию все современные модемы пытаются задействовать протокол сжатия. В случае передачи неупакованных данных это чаще всего повышает общую скорость обмена, однако в случае передачи эффективно упакованной информации (архивы ZIP, ARJ, RAR, свернутые дистрибутивные наборы, CAB-файлы и т.п.) алгоритм сжатия V.42bis чаще всего работает вхолостую, а алгоритм MNP5 в любом случае пытается сжимать поток, вызывая его увеличение из-за накладных расходов. Поэтому, если данная сессия связи ориентирована главным образом на передачу непакованных данных — лучше разрешить сжатие, если же преобладают большие объемы пакованных, а модем поддерживает только MNP5 — сжатие имеет смысл запретить.

Пропускная способность интерфейса с DTE. При установке соединения модем может либо установить с DTE такую же скорость передачи, что и в канале (floating speed), либо всегда работать с DTE на фиксированной скорости (fixed speed). Последний случай называется режимом фиксации скорости порта (Port Locking, Baud Locking и т.п.) и является наиболее удобным и эффективным. Фиксированную скорость порта рекомендуется устанавливать максимальной, на которой система и программы сохраняют способность надежно принимать данные, или хотя бы вдвое большей максимальной скорости соединения. В результате возрастание скорости передачи вследствие сжатия данных будет компенсировано увеличением скорости порта, и интерфейс с DTE не будет узким местом модемного тракта.

Чем различаются асинхронные и синхронные режимы?

В асинхронном режиме данные передаются побайтно, каждый байт предваряется стартовым битом и завершается одним или двумя стоповыми битами. Таким образом, минимальной единицей передачи является байт, а стартовые/стоповые биты между байтами обеспечивают правильное опознание начала и конца каждого байта. Этот режим удобен с точки зрения надежности выделения сигналов с линии однако требует упаковки/распаковки битовых данных в байты, а также снижает скоростей передачи в канале за счет избыточных стартовых и стоповых битов (минимум на 25% — 2/8).

В синхронном режиме данные передаются побитно, без группировки в байты. В этом случае нет накладных расходов на группировку битов, и единицей передачи является отдельный бит. Тем не менее, чтобы приемник имел возможность пересинхронизации в случае потери части потока, биты часто оформляются в пакеты различной длины, снабженные заголовком и контрольной суммой. Минимальной информационной единицей в этом случае является пакет. Поскольку длина пакета значительно превышает длину его служебной части, накладные расходы оказываются намного меньше.

Все протоколы коррекции ошибок и сжатия данных устанавливают между модемами синхронный режим передачи с обменом пакетами. В то же время обмен между модемом и DTE чаще всего идет в асинхронном режиме, что вкупе с накладными расходами на оформление и обработку пакетов порождает разность скоростей в канале и с DTE. Для компенсации этой разности в модеме имеется буфер, а также используются методы управления потоком (flow control).

Специализированные устройства (пейджерные станции, промышленные системы сбора информации и т.п.) нередко используют синхронную передачу между собой и модемом, сами формируя пакеты и следя за их правильностью. В таких случаях, из-за неспособности обычного компьтерного порта работать в синхронном режиме, взаимодействие компьютера с такими устройствами через пару модемов может оказаться невозможным.

Почему модем не распознает сигнал «занято» ?

Подавляющее большинство модемов настроено на распознавание телефонных сигналов в стандарте США/Канады. Сигнал «занято» в этом стандарте представляет собой сочетание двух частот — 480 и 620 Гц, длительность тона и паузы — 0.5 с, причем громкость сигнала существенно (на 12 дБ) ниже громкости непрерывного гудка. В российской телефонной системе сигналы «занято» передаются посылками частоты 425 Гц, длительность тона и паузы 0.35 с, уровень всех сигналов одинаковый. В результате, если анализатор модема не имеет достаточного запаса по длительности/интенсивности сигналов, корректное их опознание происходит редко или его не происходит вовсе.

Если модем имеет возможность регулировки чувствительности к сигналам станции и диапазона их параметров — можно попытаться подобрать подходящие значения. Модемы, ориентированные на российскую телефонную сеть (IDC, Russian ZyXEL, Russian Courier) изначально настроены на параметры отечественных сигналов.

Для модемов, не имеющих подобных регулировок, в том случае, когда трудность в опознании сигнала «занято» вызвана слишком громким его уровнем, можно попытаться ослабить входной сигнал, включив последовательно с линией резистор сопротивлением 50..500 Ом, однако это чаще всего отрицательно сказывается на качестве связи.

Чем различается работа по коммутируемой и выделенной линии?

Стандартная коммутируемая линия отличается наличием питающего напряжения (около 60 вольт в российских телефонных сетях) и способностью выдавать и принимать сигналы состояния линии и набора номера. Соответственно, при работе по коммутируемой линии вызывающий модем в общем случае дожидается непрерывного гудка, затем набирает номер, и только после этого ожидает ответа от удаленного модема. Отвечающий модем, в свою очередь, воспринимает сигнал вызова (звонок), после чего подключается к линии («берет трубку») и переходит в режим ответа.

Выделенная линия представляет собой постоянное двухточечное соединение между двумя абонентами. Обычно это — двух- или четырехпроводная линию связи, напрямую соединяющая два модема и никак не соединенная со станционной аппаратурой. В простейшем случае это может быть обычный телефонный кабель, входящий в комплект модема, в наиболее сложном — участок многоканального проводного, оптоволоконного или радиотракта, который при помощи канальной аппаратуры имитирует простое проводное соединение.

Модемы, поддерживающие работу по выделенной линии (команда &L1) в этом режиме автоматически отключают проверку наличия непрерывного гудка, а также автоматически пытаются восстановить соединение при его разрыве. Для начальной установки соединения один модем должен быть активизирован как вызывающий (команда D), а другой — как отвечающий (команда A). После этого восстановление связи при обрыве модемы выполняют сами в тех же ролях.

Кроме этого, модемы с поддержкой выделенных линий имеют запоминаемые режимы, в которых установление связи в выбранной роли выполняется автоматически при включении питания (либо после появления сигнала DTR). Таким образом, пара таких модемов сразу после включения питания или появления DTR создает автоматически поддерживаемое соединение без вмешательства управляющих программ, которым в этом случае остается лишь слежение за сигналом DCD и/или сообщениями CONNECT/NO CARRIER. В идеальном случае такая пара модемов позволяет организовать полностью прозрачное соединение, аналогичное нуль-модемному кабелю, при котором программам совершенно неизвестно о существовании в каких-либо дополнительных устройств в тракте.

Модем не набирает номер. Почему?

Если попытка соединиться завершается сообщением «Нет сигнала в линии» (No Dialtone), и при этом Вы слышите через динамик модема (если таковой имеется) длинный гудок, то скорее всего Ваша АТС выдает нестандартный сигнал набора. В этом случае поможет команда X3 (модем игнорирует сигнал набора). Если эта команда не помогает, то попробуйте заменить ее на X0.

Если же Вы не слышите длинного гудка, то либо у Вас проблема с линией (проверяется подключением обычного телефона вместо модема), либо Вы включили телефонный шнур не в тот разъем модема. У модема обычно есть два разъема (исключение составляют недорогие модемы неизвестного производства, которые лучше не приобретать) называемые PHONE и LINE (иногда WALL). Шнур телефонной линии должен быть включен в разъем LINE (WALL). Во второй разъем включают телефонный аппарат (когда модем работает, то телефонный аппарат отключается).

Если команда X3 (или X0) не помогла, и Вы уверенны, что телефонная линия исправна и подключена правильно, то неисправность следует искать в модеме. В этом случае Вам следует обратиться в сервисный центр производителя или в организацию, указанную в гарантийном талоне.

Удаленный модем снял трубку и отвечает, но мой модем его не слышит. Что делать?

Если модем исправен и сигнал ответа имеет достаточную мощность, то причина скорее всего в том, что он не смог распознать длинный гудок от АТС перед началом обмена (Ваш модем может не уметь одновременно распознавать гудок и сигнал ответа). Это могло произойти, если гудок был очень тихий или очень короткий (встречается на некоторых АТС и многоканальных телефонах). Универсальное средство — команда X2.

Если это не помогает, то скорее всего Ваш модем не обладает нужной чувствительностью (просто не слышит удаленный модем) или же неисправен.

Модемы начали обмен, проверка имени пользователя и пароля прошла успешно, но соединение было разорвано при входе в сеть. Почему?

Зайдите в «Мой компьютер»->«Удаленный доступ», далее щелкните правой кнопкой мыши на настраиваемом соединении и выберите пункт «Свойства» в появившемся меню. Далее перейдите на закладку «Тип сервера» и уберите галочку возле пункта «Войти в сеть».

Модемы начали обмен, но соединение было разорвано до проверки имени пользователя и пароля. Как это исправить?

Скорее всего в настройках соединения установлен слишком короткий интервал ожидания установления соединения. Для изменения этого интервала зайдите в «Мой компьютер»->«Удаленный доступ» , далее щелкните правой кнопкой мыши на настраиваемом соединении и выберите пункт «Свойства» в появившемся меню. Далее нажмите кнопку «Настройка», выберите закладку «Подключение». Здесь либо поменяйте цифру в пункте «Отмена вызова при отсутствии связи» (рекомендуем поставить как минимум 120 секунд), либо уберите галочку вообще. Также обратите внимание на пункт «Отключение при простое более...».

Если это не помогло, то смотрите ответ на следующий вопрос.

Как побороть частые обрывы связи?

Причина — плохое качество линии (большое затухание, импульсные помехи, периодическое замирание сигнала и т.п.). Для начала попробуйте добавить к строке инициализации следующие команды: S7=200S10=200. Если это не помогло, то Вы можете попробовать подобрать уровень сигнала, чувствительность на прием, протокол связи (запретить V.90), установить режим соединения с коррекцией ошибок или подобрать ограничение по скорости. Этот процесс достаточно длителен и утомителен, т.к. оптимальные параметры придется подбирать методом проб и ошибок. Соответствующие команды Вы можете найти в руководстве к своему модему или в конце этого FAQ.

Как побороть низкую скорость соединения или кратковременные перерывы в передаче данных?

Вам следует попробовать подобрать уровень сигнала, чувствительность на прием, протокол связи (запретить V.90) или скорость. В некоторых случаях, как ни странно, снижение скорости соединения или выбор более медленного протокола повышает общую производительность, т.к. уменьшается количество длинных перетренировок. Соответствующие команды Вы можете найти в руководстве к своему модему или в следующих разделах этого FAQ.

Рекомендуемые настройки модемов в зависимости от качества линии.

<мин.скорость_на_прием>,<макс.скорость>, <мин.скорость_на_передачу>, <макс.скорость> — от 300 до 33600 (в случае V.34) или 56000 (в случае V.90)
Модем «Хорошая» линия «Средняя» линия «Плохая» линия
Motorola Модем Уровень сигнала Чувст-ть Запрет V.90 Режим соединения
с корр. без корр. авто
USR Sportster N/A N/A S32=66 &M5 &M0 &M4
USR Courier N/A N/A S58=32 – – –
ZyXEL Omni *Pn
Motorola CODEX *MX3 *MX4 *MX5 *MX7 *MX9 *MX10 *MX11 *MX12
US Robotics &N4 &N5 &N6 &N8 &N10 &N11 &N12 &N13
ZyXEL &N5 &N19 &N4 &N17 &N66 &N65 &N64 &N63
IDC 2814 BXL+ S37=7 S37=8 S37=9 S37=11 S37=13 S37=14 S37=15 S37=16

Copyrights

При составлении данного FAQ в значительной степени были использованы Frequently Asked Questions (Часто Задаваемые Вопросы) по модемам для телефонных линий, составленные Евгением Музыченко (Eugene Muzychenko) (2:5000/14@FidoNet, [email protected]). Copyright (C) 1998-99, Eugene V. Muzychenko. All rights reserved.