Преобразования сигналов в параметрических цепях. Преобразование сигналов линейными параметрическими цепями Преобразование сигналов в линейных цепях

4.1. Классификация и характеристики

параметрических цепей

Литература: [Л.1], стр. 307-308

[Л.2], стр. 368-371

Параметрическими называются радиотехнические цепи, оператор преобразования которых зависит от времени. Закон преобразования сигнала в параметрической цепи записывается выражением:

Параметрический резистор , сопротивление которого изменяется во времени по заданному закону и вместе с тем не зависит от величины входного сигнала, может быть реализован на базе безынерциального нелинейного элемента с вольт-амперной характеристикой , на вход которого подается сумма преобразуемого сигнала и управляющего напряжения (рис. 4.1).

Положение рабочей точки А на характеристике определяется постоянным напряжением смещения . Так как напряжение сигнала гораздо меньше напряжения смещения , то такой слабый сигнал можно считать малым приращением по отношению к и сопротивление нелинейного элемента по отношению к сигналу оценивать дифференциальным сопротивлением

. (4.2)

Величина, обратная , как известно, называется дифференциальной крутизной

. (4.3)

Если, например, ВАХ нелинейного элемента аппроксимируется полиномом:

то в соответствии с (4.3), получим

или, учитывая, что

Ток, вызванный полезным сигналом

Таким образом, по отношению к сигналу справедливо условие (4.1) и по отношению к сигналу нелинейный элемент ведет себя как линейный, но с переменной крутизной .

Существенной особенностью параметрического резистора является то, что его сопротивление или крутизна могут быть отрицательными . Это имеет место при выборе рабочей точки на спадающем участке вольт-амперной характеристики (точка В на рис. 4.1).

Переменную управляемую емкость в параметрических цепях реализуют при помощи специальных полупроводниковых диодов, называемых варикапами . Работа этих диодов основана на следующем эффекте: если к переходу диода приложено напряжение обратной полярности, то разделенный заряд в запирающем слое является нелинейной функцией приложенного напряжения . Зависимость называют кулон-вольтовой характеристикой

где – значение емкости.

Так же, как и сопротивление резистора, емкость может быть статической и дифференциальной. Дифференциальная емкость определяется следующим образом

. (4.5)

Здесь – исходное запирающее напряжение варикапа.

При изменении напряжения, приложенного к варикапу (конденсатору) возникает ток:

Очевидно, чем больше запирающее напряжение, тем больше величина обратного перехода, тем меньше значение .

Переменную управляемую индуктивность в параметрических цепях можно реализовать на базе катушки индуктивности с ферромагнитным сердечником, магнитная проницаемость которого зависит от величины подмагничивающего тока . Однако, вследствие большой инерционности процессов перемагничивания материала сердечника, переменные управляемые индуктивности не нашли применения в параметрических радиотехнических цепях.

Чтобы преобразовать входной сигнал в удобную для хранения, воспроизведения и управления форму, необходимо обосновать требования к параметрам систем преобразования сигнала. Для этого надо математически описать связь между сигналами на входе, выходе системы и параметрами системы.

В общем случае система преобразования сигнала является нелинейной: при вхождении в нее гармонического сигнала на выходе системы возникают гармоники других частот. Параметры нелинейной системы преобразования зависят от параметров входного сигнала. Общей теории нелинейности не существует . Одним из способов описать связь между входным E вх (t ) и выходным E вых (t ) сигналами и параметром K нелинейности системы преобразования является следующий:

(1.19)

где t и t 1 – аргументы в пространстве выходного и входного сигналов соответственно.

Нелинейность системы преобразования определяется видом функции K .

Чтобы упростить анализ процесса преобразований сигнала, используют допущение о линейности систем преобразований. Это допущение применимо к нелинейным системам, если сигнал имеет малую амплитуду гармоник, либо когда систему можно рассматривать как совокупность линейного и нелинейного звеньев. Примером такой нелинейной системы являются светочувствительные материалы (подробный анализ их преобразующих свойств будет сделан ниже).

Рассмотрим преобразование сигнала в линейных системах. Система называется линейной , если ее реакция на одновременное воздействие нескольких сигналов равна сумме реакций, вызываемых каждым сигналом, действующим отдельно , т. е. выполняется принцип суперпозиции :

где t , t 1 – аргументы в пространстве выходного и входного сигналов соответственно;

E 0 (t , t 1) – импульсная реакция системы.

Импульсной реакцией системы называется выходной сигнал, если на вход подан сигнал, описываемый дельта-функцией Дирака. Эту функцию δ(x ) определяют тремя условиями:

δ(t ) = 0 при t ≠ 0; (1.22)
(1.23)
δ(t ) = δ(–t ). (1.24)

Геометрически она совпадает с положительной частью вертикальной оси координат, т. е. имеет вид луча, выходящего вверх из начала координат. Физической реализацией дельта-функции Дирака в пространстве является точка с бесконечной яркостью, во времени – бесконечно короткий импульс бесконечно большой интенсивности, в спектральном пространстве – бесконечно сильное монохроматическое излучение.

Дельта-функция Дирака обладает следующими свойствами:

(1.25)
(1.26)

Если импульс происходит не на нулевом отсчете, а при значении аргумента t 1 , то такую "сдвинутую" на t 1 дельта-функцию можно описать как δ(t t 1).

Чтобы упростить выражение (1.21), связывающее выходной и входной сигналы линейной системы, принимают допущение о нечувствительности (инвариантности) линейной системы к сдвигу. Линейная система называется нечувствительной к сдвигу , если при сдвиге импульса импульсная реакция изменяет только свое положение, но не изменяет своей формы , т. е. удовлетворяет равенству:

E 0 (t , t 1) = E 0 (t t 1). (1.27)

Рис. 1.6. Нечувствительность импульсной реакции систем

или фильтров к сдвигу

Оптические системы, являясь линейными, чувствительны к сдвигу (не инвариантны): распределение, освещенность и размер "кружка" (в общем случае не являющегося кругом) рассеяния зависят от координаты в плоскости изображения. Как правило, в центре поля зрения диаметр "кружка" меньше, а максимальное значение импульсной реакции больше, чем по краям (рис.1.7).

Рис. 1.7. Чувствительность импульсной реакции к сдвигу

Для нечувствительных к сдвигу линейных систем выражение (1.21), связывающее входной и выходной сигналы, приобретает более простой вид:

Из определения свертки следует возможность представить выражение (1.28) в несколько ином виде:

что для рассматриваемых преобразований дает

(1.32)

Таким образом, зная сигнал на входе линейной и инвариантной к сдвигу системы, а также импульсную реакцию системы (отклик ее на единичный импульс), по формулам (1.28) и (1.30) можно математически определить сигнал на выходе системы, не реализуя физически саму систему.

К сожалению, из указанных выражений невозможно непосредственно найти одну из подынтегральных функций E вх (t ) или E 0 (t ) по второй и известному выходному сигналу.

Если линейная, нечувствительная к сдвигу система состоит из нескольких, последовательно пропускающих сигнал фильтрующих звеньев, то импульсная реакция системы представляет собой свертку импульсных реакций составляющих фильтров, что в сокращенном виде можно записать как

что соответствует сохранению неизменного значения постоянной составляющей сигнала при фильтрации (это станет очевидным при анализе фильтрации в частотной области).

Пример . Рассмотрим преобразование оптического сигнала при получении на светочувствительном материале миры с косинусоидальным распределением интенсивности. Мирой называется решетка или ее изображение, состоящие из группы полос определенной ширины. Распределение яркости в решетке обычно имеет прямоугольный или косинусоидальный характер. Миры необходимы для экспериментального изучения свойств фильтров оптических сигналов.

Схема устройства для записи косинусоидальной миры представлена на рис. 1.8.

Рис. 1.8. Схема устройства для получения миры
с косинусоидальным распределением интенсивности

Равномерно перемещающуюся со скоростью v фотопленку 1 освещают через щель 2 шириной A. Изменение освещенности во времени производится по косинусоидальному закону. Это достигается за счет прохождения светового пучка через осветительную систему 3 и два поляроидных фильтра 4 и 5. Поляроидный фильтр 4 равномерно вращается, фильтр 5 неподвижен. Вращение оси подвижного поляризатора относительно неподвижного обеспечивает косинусоидальное изменение интенсивности проходящего светового пучка. Уравнение изменения освещенности E (t ) в плоскости щели имеет вид:

Фильтрами в рассматриваемой системе являются щель и фотопленка. Так как подробный анализ свойств светочувствительных материалов будет приведен ниже, то проанализируем только фильтрующее действие щели 2. Импульсную реакцию E 0 (х ) щели 2 шириной A можно представить в виде:

(1.41)

то окончательный вид уравнения сигнала на выходе щели следующий:

Сравнение Е вых (x ) и Е вх (x ) показывает, что они отличаются лишь наличием множителя в переменной части. График функции типа sinc представлен на рис. 1.5. Она характеризуется осциллирующим с постоянным периодом убыванием от 1 до 0.

Следовательно, при увеличении значения аргумента этой функции, т. е. при росте произведения w 1 A и уменьшении v , амплитуда переменной составляющей сигнала на выходе падает.

Кроме того, эта амплитуда будет обращаться в нуль, когда

Это имеет место при

Где n = ±1, ±2…

В таком случае вместо миры на пленке получится равномерное почернение.

Изменения постоянной составляющей сигнала а 0 не произошло, т. к. импульсная реакция щели здесь являлась нормированной в соответствии с условием (1.37).

Таким образом, регулируя параметры записи миры v , A , w 1 , можно подобрать оптимальную для данного светочувствительного материала амплитуду переменной составляющей освещенности, равную произведению a sinc ((w 1 A )/(2v )), и предотвратить брак.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

Преобразование сигналов линейными цепями с постоянными параметрами

1. Общие сведения

5.1 Цепи интегрирующего типа (фильтры нижних частот)

5.2 Цепи дифференцирующего типа (фильтры верхних частот)

5.3 Частотно-избирательные цепи

Литература

1. Общие сведения

Электронная цепь представляет собой совокупность элементов, обеспечивающих прохождение и преобразование постоянных и переменных токов в широком интервале частот. Она включает источники электрической энергии (источники питания), ее потребители и накопители, а также соединительные провода. Элементы цепей можно разделить на активные и пассивные.

В активных элементах возможно преобразование токов или напряжений и одновременное увеличение их мощности. К ним относятся, например, транзисторы, операционные усилители и др.

В пассивных элементах преобразование токов или напряжений увеличением мощности не сопровождается, а, как правило, наблюдается ее уменьшение.

Источники электрической энергии характеризуются величиной и направлением электродвижущей силы (э.д.с.) и величиной внутреннего сопротивления. При анализе электронных цепей пользуются понятиями идеальных источников (генераторов) э.д.с. Е г (рис. 1,а) и тока I г (рис. 1,б). Они подразделяются на источники э.д.с. (источники напряжения) и источники тока, называемые соответственно генераторами э.д.с. (генераторами напряжения) и генераторами тока.

Под источником э.д.с. понимают такой идеализированный источник питания, э.д.с которого не зависит от протекающего через него тока. Внутреннее сопротивление R г этого идеализированного источника питания равно нулю

Генератором тока называют такой идеализированный источник питания, который отдает ток I г в нагрузку, не зависящий от величины ее сопротивления R н. Для того чтобы ток I г источника тока не зависел от сопротивления нагрузки R н, внутреннее сопротивление его и его э.д.с. теоретически должны стремиться к бесконечности.

Реальные источники напряжения и источники тока имеют внутреннее сопротивление R г конечной величины (рис. 2).

К пассивным элементам радиотехнических цепей относятся электрические сопротивления (резисторы), конденсаторы и катушки индуктивности.

Резистор является потребителем энергии. Основной параметр резистора - активное сопротивление R . Сопротивление выражают в омах (Ом), килоомах (кОм) и мегомах (МОм).

К накопителям энергии относятся конденсатор (накопитель электрической энергии) и катушка индуктивности (накопитель магнитной энергии).

Основной параметр конденсатора - емкость С . Емкость измеряется в фарадах (Ф), микрофарадах (мкФ), нанофарадах (нФ), пикофарадах (пФ).

Основным параметром катушки индуктивности является ее индуктивность L . Величину индуктивности выражают в генри (Гн), миллигенри (мГн), микрогенри (мкГн) или наногенри (нГн).

При анализе схем обычно предполагают, что все эти элементы являются идеальными, для которых справедливы следующие соотношения между падением напряжения u на элементе и протекающим через него током i :

Если параметры элементов R , L и С не зависят от внешних воздействий (напряжений и тока) и не могут увеличивать энергию действующего в цепи сигнала, то их называют не только пассивными, но и линейными элементами. Цепи, содержащие такие элементы, называют пассивными линейными цепями, линейными цепями с постоянными параметрами или стационарными цепями.

Цепь, в которой активное сопротивление, емкость и индуктивность отнесены к определенным ее участкам, называется цепью с сосредоточенными параметрами. Если параметры цепи распределены вдоль нее, ее считают цепью с распределенными параметрами.

Параметры элементов цепей могут изменяться с течением времени по определенному закону в результате дополнительных воздействий, не связанных с напряжениями или токами в цепи. Такие элементы (и составленные из них цепи) называют параметрическими:

К параметрическим элементам относятся терморезистор, сопротивление которого является функцией температуры, порошковый угольный микрофон с управляемым под действием давления воздуха сопротивлением и др.

Элементы, параметры которых зависят от величины проходящих по ним токов или напряжений на элементах, а взаимосвязи между токами и напряжениями описываются, нелинейными уравнениями, называют нелинейным, а цепи, содержащие такие элементы - нелинейными цепями.

Процессы, происходящие в цепях с сосредоточенными параметрами, описываются соответствующими дифференциальными уравнениями, связывающими между собой входной и выходной сигналы через параметры цепей.

Линейное дифференциальное уравнение с постоянными коэффициентами a 0 ,a 1 ,a 2 …a n ,b 0 ,b 1 ,..,b m характеризует линейную цепь с постоянными параметрами

Линейные дифференциальные уравнения с переменными коэффициентами описывают линейные цепи с переменными параметрами.

Наконец, процессы, происходящие в нелинейных цепях, описываются нелинейными дифференциальными уравнениями.

В линейных параметрических системах хотя бы один из параметров изменяется по какому-либо заданному закону. Результат преобразования сигнала такой системой может быть получен путем решения соответствующего дифференциального уравнения с переменными коэффициентами, связывающего между собой входной и выходной сигналы.

2. Свойства линейных цепей с постоянными параметрами

Как уже указывалось, процессы, происходящие в линейных цепях с постоянными сосредоточенными параметрами, описываются линейными дифференциальными уравнениями с постоянными коэффициентами. Методику составления таких уравнений рассмотрим на примере простейшей линейной цепи, состоящей из последовательно соединенных элементов R , L и C (рис. 3). Цепь возбуждается идеальным источником напряжения произвольной формы u (t ). Задача анализа заключается в определении протекающего через элементы цепи тока.

В соответствии со вторым законом Кирхгофа напряжение u (t ) равно сумме падений напряжений на элементах R , L и C

Ri +L = u(t).

Продифференцировав это уравнение, получим

Решение полученного неоднородного линейного дифференциального уравнения позволяет определить искомую реакцию цепи - i (t ).

Классический метод анализа преобразования сигналов линейными цепями заключается в нахождении общего решения таких уравнений, равного сумме частного решения исходного неоднородного уравнения и общего решения однородного уравнения.

Общее решение однородного дифференциального уравнения не зависит от внешнего воздействия (так как правая часть исходного уравнения, характеризующая это воздействие, принята равной нулю) и целиком определяется структурой линейной цепи и начальными условиями. Поэтому процесс, описываемый этой составляющей общего решения, получил название свободным процессом, а сама составляющая - свободной составляющей.

Частное решение неоднородного дифференциального уравнения определяется видом возбуждающей функции u (t ). Поэтому она называется вынужденной (принужденной) составляющей, что указывает на ее полную зависимость от внешнего возбуждения.

Таким образом, процесс, происходящий в цепи, можно рассматривать состоящим из двух накладывающихся друг на друга процессов - принужденного, который как бы наступил сразу, и свободного, имеющего место лишь только во время переходного режима. Благодаря свободным составляющим и достигается в переходном процессе непрерывное приближение к принужденному (стационарному) режиму (состоянию) линейной цепи. В стационарном состоянии закон изменения всех токов и напряжений в линейной цепи с точностью до постоянных величин совпадает с законом изменения напряжения внешнего источника.

Одним из самых важных свойств линейных цепей, вытекающим из линейности дифференциального уравнения, описывающего поведение цепи, является справедливость принципа независимости или наложения (суперпозиции). Суть этого принципа может быть сформулирована следующим образом: при действии на линейную цепь нескольких внешних сил поведение цепи можно определять путем наложения решений, найденных для каждой из сил в отдельности. Другими словами, в линейной цепи сумма реакций этой цепи от различных воздействий совпадает с реакцией цепи от суммы воздействий. При этом предполагается, что цепь свободна от начальных запасов энергии.

Из теории интегрирования линейных дифференциальных уравнений с постоянными коэффициентами следует еще одно фундаментальное свойство линейных цепей. При любом сколь угодно сложном воздействии в линейной цепи с постоянными параметрами не возникает новых частот. Это означает, что ни одно из преобразований сигналов, сопровождающихся появлением новых частот (т. е. частот, отсутствующих в спектре входного сигнала), не может в принципе быть осуществлено с помощью линейной цепи с постоянными параметрами.

3. Анализ преобразования сигналов линейными цепями в частотной области

Классический метод анализа процессов в линейных цепях часто оказывается связанным с необходимостью проведения громоздких преобразований.

Альтернативой классическому методу является операторный (операционный) метод. Его сущность состоит в переходе посредством интегрального преобразования над входным сигналом от дифференциального уравнения к вспомогательному алгебраическому (операционному) уравнению. Затем находится решение этого уравнения, из которого с помощью обратного преобразования получают решение исходного дифференциального уравнения.

В качестве интегрального преобразования наиболее часто используют преобразование Лапласа, которое для функции s (t ) дается формулой:

где p - комплексная переменная: . Функция s (t ) называется оригиналом, а функция S (p ) - ее изображением.

Обратный переход от изображения к оригиналу осуществляется с помощью обратного преобразования Лапласа

Выполнив преобразование Лапласа обеих частей уравнения (*), получим:

Отношение изображений Лапласа выходного и входного сигналов носит название передаточной характеристики (операторного коэффициента передачи) линейной системы:

Если передаточная характеристика системы известна, то для нахождения выходного сигнала по заданному входному сигналу необходимо:

· - найти изображение Лапласа входного сигнала;

· - найти изображение Лапласа выходного сигнала по формуле

· - по изображению S вых (p ) найти оригинал (выходной сигнал цепи).

В качестве интегрального преобразования для решения дифференциального уравнения может использоваться также преобразование Фурье, являющееся частным случаем преобразования Лапласа, когда переменная p содержит только мнимую часть. Отметим, что для того чтобы к функции можно было применить преобразование Фурье, она должна быть абсолютно интегрируемой. Это ограничение снимается в случае преобразования Лапласа.

Как известно, прямое преобразование Фурье сигнала s (t ), заданного во временной области, является спектральной плотностью этого сигнала:

Выполнив преобразование Фурье обеих частей уравнения (*), получим:

Отношение изображений Фурье выходного и входного сигналов, т.е. отношение спектральных плотностей выходного и входного сигналов, называется комплексным коэффициентом передачи линейной цепи:

Если линейной системы известен, то нахождение выходного сигнала для заданного входного сигнала производят в следующей последовательности:

· определяют с помощью прямого преобразования Фурье спектральную плотность входного сигнала;

· определяют спектральную плотность выходного сигнала:

· с помощью обратного преобразования Фурье находят выходной сигнал, как функцию времени

Если для входного сигнала существует преобразование Фурье, то комплексный коэффициент передачи может быть получен из передаточной характеристики заменой р на j .

Анализ преобразования сигналов в линейных цепях с использованием комплексного коэффициента передачи называется методом анализа в частотной области (спектральным методом).

На практике К (j ) часто находят методами теории цепей на основании принципиальных схем, не прибегая к составлению дифференциального уравнения. Эти методы базируются на том, что при гармоническом воздействии комплексный коэффициент передачи может быть выражен в виде отношения комплексных амплитуд выходного и входного сигналов

линейный цепь сигнал интегрирующий

Если входной и выходной сигналы являются напряжениями, то K (j ) является безразмерным, если соответственно током и напряжением, то K (j ) характеризует частотную зависимость сопротивления линейной цепи, если напряжением и током, то - частотную зависимость проводимости.

Комплексный коэффициент передачи K (j ) линейной цепи связывает между собой спектры входного и выходного сигналов. Как и любая комплексная функция, он может быть представлен в трех формах (алгебраической, показательной и тригонометрической):

где - зависимость от частоты модуля

Зависимость фазы от частоты.

В общем случае комплексный коэффициент передачи можно изобразить на комплексной плоскости, откладывая по оси действительных величин, - по оси мнимых значений. Полученная при этом кривая называется годографом комплексного коэффициента передачи.

На практике большей частью зависимости К () и k () рассматриваются отдельно. При этом функция К () носит название амплитудно-частотной характеристики (АЧХ), а функция k () - фазо-частотной характеристики (ФЧХ) линейной системы. Подчеркнем, что связь между спектром входного и выходного сигналов существует только в комплексной области.

4. Анализ преобразования сигналов линейными цепями во временной области

Принцип суперпозиции может быть использован для определения реакции, лишенной начальных запасов энергии линейной цепи, на произвольное входное воздействие. Расчеты при этом оказываются наиболее простыми, если исходить из представления возбуждающего сигнала в виде суммы однотипных стандартных составляющих, изучив предварительно реакцию цепи на выбранную стандартную составляющую. В качестве стандартных составляющих входного сигнала часто используется единичная функция (единичный скачок) 1(t - t 0) и дельта-импульс (единичный импульс) (t - t 0).

Реакция линейной цепи на единичный скачок называется ее переходной характеристикой h (t ).

Реакция линейной цепи на дельта-импульс называется импульсной характеристикой g(t) этой цепи.

Так как единичный скачок является интегралом от дельта-импульса, то функции h(t ) и g(t ) связаны между собой следующими соотношениями:

Любой входной сигнал линейной цепи может быть представлен в виде совокупности дельта-импульсов, умноженных на значение сигнала в моменты времени, соответствующие положению этих импульсов на временной оси. В этом случае связь между выходным и входным сигналами линейной цепи дается интегралом свертки (интегралом Дюамеля):

Входной сигнал можно представить также в виде совокупности единичных скачков, взятых с весами, соответствующими производной сигнала в точке начала единичного скачка. Тогда

Анализ преобразования сигналов с использованием импульсной или переходной характеристики называется методом анализа во временной области (метод интеграла наложения).

Выбор временного или спектрального метода анализа преобразования сигналов линейными системами диктуется, главным образом, удобством получения исходных данных о системе и простотой вычислений.

Преимуществом спектрального метода является оперирование со спектрами сигналов, в результате чего можно хотя бы качественно по изменению спектральной плотности входного сигнала сделать суждение об изменении его форм на выходе системы. При использовании метода анализа во временной области в общем случае такую качественную оценку сделать крайне сложно

5. Простейшие линейные цепи и их характеристики

Поскольку анализ линейных цепей можно проводить в частотной или во временной области, то результат преобразования сигнала такими системами можно трактовать двояким образом. Анализ во временной области позволяет выяснить изменение формы входного сигнала. В частотной области этот результат будет выглядеть как преобразование над функцией частоты, приводящее к изменению спектрального состава входного сигнала, которое в конечном итоге определяет форму выходного сигнала, во временной области - как соответствующее преобразование над функцией времени.

Характеристики простейших линейных цепей представлены в табл.4.1.

5.1 Цепи интегрирующего типа (фильтры нижних частот)

Преобразование сигнала по закону

где m - коэффициент пропорциональности, - значение выходного сигнала в момент t = 0, носит название интегрирования сигнала.

Операция интегрирования однополярных и биполярных прямоугольных импульсов, выполняемая идеальным интегратором, иллюстрируется рис. 4.

Комплексный коэффициент передачи такого устройства амплитудно-частотная характеристика фазо-частотная характеристика переходная характеристика h(t) = t, для t 0.

Идеальным элементом для интегрирования входного тока i является идеальный конденсатор (рис. 5), для которого

Обычно ставится задача интегрирования выходного напряжения. Для этого достаточно преобразовать источник входного напряжения U вх в генератор тока i . Близкий к этому результат можно получить, если последовательно с конденсатором включить резистор достаточно большого сопротивления (рис. 6), при котором ток i = (U вх - U вых)/R почти не зависит от напряжения U вых. Это будет справедливо при условии U вых U вх. Тогда выражение для выходного напряжения (при нулевых начальных условиях U вых (0) = 0)

можно заменить приближенным выражением

где - выражаемая определенным интегралом алгебраическая (т.е. с учетом знака) площадь под сигналом на интервале (0,t ), - результат точного интегрирования сигнала.

Степень приближе-ния реального выходного сигнала к функции зависит от степени выполнения неравенства U вых U вх или, что почти то же самое, от степени выполнения неравенства U вх . Величина обратно пропорциональна величине = RC , которая получила название постоянной времени RC - цепи. Следовательно, для возможности использования RC- цепи в качестве интегрирующей необходимо, чтобы постоянная времени была достаточно велика.

Комплексный коэффициент передачи RC -цепи интегрирующего типа

Сравнив эти выражения с выражениями и для идеального интегратора, найдем, что для удовлетворительного интегрирования требуется выполнение условия " 1.

Это неравенство должно удовлетворяться для всех составляющих спектра входного сигнала, в том числе и для самых малых.

Переходная характеристика RC - цепи интегрирующего типа

Таким образом, RC-цепь интегрирующего типа может осуществлять преобразование сигналов. Однако очень часто возникает необходимость разделения электрических колебаний различных частот. Эта задача решается с помощью электрических устройств, называемых фильтрами. Из спектра поданных на вход фильтра электрических колебаний он выделяет (пропускает на выход) колебания в заданной области частот (называемой полосой пропускания), и подавляет (ослабляет) все остальные составляющие. По виду АЧХ различают фильтры:

- нижних частот , пропускающие колебания с частотами не выше некоторой граничной частоты 0 (полоса пропускания? = 0 0);

- верхних частот , пропускающих колебания с частотами выше 0 (полоса пропускания? = 0);

- полосовые , которые пропускают колебания в конечном интервале частот 1 2 (полоса пропускания? = 1 2);

- режекторные заграждающие , задерживающие колебания в заданной частотной полосе (полоса непропускания? = 1 2).

Вид АЧХ RC -цепи интегрирующего типа (рис 4.6.б ) показывает, что мы имеем дело с цепью, эффективно пропускающей низкие частоты. Поэтому RC -цепь такого типа можно классифицировать как фильтр нижних частот (ФНЧ). При соответствующем выборе постоянной времени можно существенно ослабить (отфильтровать) высокочастотные составляющие входного сигнала и практически выделить постоянную составляющую (если она имеется). За граничную частоту такого фильтра принимают частоту, на которой, т.е. коэффициент передачи мощности сигнала снижается в 2 раза. Эту частоту часто называют частотой среза с (граничной частотой 0 ). Частота среза

Дополнительный фазовый сдвиг, вносимый RC -цепью интегрирующего типа на частоте с, составляет - /4 .

К цепям интегрирующего типа относится также LR -цепь с сопротивлением на выходе (рис. 6). Постоянная времени такой цепи =L /R .

5.2 Цепи дифференцирующего типа (фильтры верхних частот)

Дифференцирующей называется цепь, для которой выходной сигнал пропорционален производной входного сигнала

где m - коэффициент пропорциональности. Комплексный коэффициент передачи идеального дифференцирующего устройства амплитудно-частотная характеристика фазо-частотная характеристика переходная характеристика h (t ) = (t ).

Идеальным элементом для преобразования приложенного к нему напряжения в ток I , изменяющийся пропорционально производной, является идеальный конденсатор (рис. 4.7).

Чтобы получить напряжение, пропорциональное входному напряжению, достаточно преобразовать протекающий в цепи ток i в напряжение, пропорциональное этому току. Для этого достаточно последовательно с конденсатором включить резистор R (рис. 8, б ) настолько малого сопротивления, что закон изменения тока почти не изменится (i ? CdU вх /dt ).

Однако в действительности для RC -цепи, представленной на рис. 4.8,а , выходной сигнал

и приближенное равенство U вх (t ) ? RCdU вх /dt будет справедливо лишь при условии

С учетом предыдущего выражения получим:

Выполнению этого неравенства будет способствовать уменьшение постоянной времени = RC , но при этом будет уменьшаться и величина выходного сигнала U вых, которая также пропорциональна.

Более детальный анализ возможности использования RC -цепи в качестве дифференцирующей можно провести в частотной области.

Комплексный коэффициент передачи для RC -цепи дифференцирующего типа определяется из выражения

АЧХ и ФЧХ (рис. 4.8,в ) даются соответственно выражениями:

Сравнивая последние выражения с АЧХ и ФЧХ идеального дифференциатора, можно заключить, что для дифференцирования входного сигнала должно выполняться неравенство Оно должно удовлетворяться для всех частотных составляющих спектра входного сигнала.

Переходная характеристика RC -цепи дифференцирующего типа

Характер поведения АЧХ RC -цепи дифференцирующего типа показывает, что такая цепь эффективно пропускает высокие частоты, поэтому ее можно классифицировать как фильтр верхних частот (ФВЧ). За граничную частоту такого фильтра принимают частоту, на которой. Ее часто называют частотой среза с (граничной частотой 0 ). Частота среза

При больших постоянных времени ф RC -цепи дифференцирующего типа напряжение на резисторе повторяет переменную составляющую входного сигнала, а его постоянная составляющая полностью подавляется. RC -цепь в этом случае называется разделительной.

Такими же характеристиками обладает RL -цепь (рис.4.8,б), постоянная времени которой ф = L / R .

5.3 Частотно-избирательные цепи

Частотно-избирательные цепи пропускают на выход только колебания с частотами, лежащими в относительно узкой полосе вокруг центральной частоты. Такие цепи часто называют линейными полосовыми фильтрами. Простейшими полосовыми фильтрами являются колебательные контуры, образованные элементами L , C и R , причем в реальных контурах сопротивление R (сопротивление потерь) обычно является активным сопротивлением реактивных элементов.

Колебательные контуры в зависимости от соединения образующих их элементов по отношению к выходным зажимам подразделяются на последовательные и параллельные.

Схема последовательного колебательного контура, когда выходным сигналом является напряжение, снимаемое с емкости, приведена на рис.9,а .

Комплексный коэффициент передачи такого контура

Если в последовательном колебательном контуре напряжение снимать с индуктивности (рис. 4.9,б ), то

На некоторой частоте входных колебаний в последовательном колебательном контуре имеет место резонанс напряжений, выражающийся в том, что реактивные сопротивления емкости и индуктивности становятся равными по величине и противоположными по знаку. При этом общее сопротивление контура становится чисто активным, а ток в контуре имеет максимальное значение. Частоту, удовлетворяющую условию

называют резонансной частотой 0:

Величина:

представляет собой модуль сопротивления любого из реактивных элементов колебательного контура на резонансной частоте и называется характеристическим (волновым) сопротивлением контура.

Отношение активного сопротивления к характеристическому сопротивлению называют затуханием контура:

Обратную d величину именуют добротностью контура:

На резонансной частоте

Это означает, что напряжение на каждом из реактивных элементов контура при резонансе в Q раз превосходит напряжение источника сигнала.

При нахождении добротности реального (включенного в какую-либо цепь) последовательного колебательного контура необходимо учитывать внутреннее (выходное) сопротивление R с источника входного сигнала (это сопротивление будет включаться последовательно с активным сопротивлением контура) и активное сопротивление R н нагрузки (которое окажется подключенным параллельно выходному реактивному элементу). С учетом этого эквивалентная добротность

Отсюда следует, что резонансные свойства последовательного колебательного контура лучше всего проявляются при низкоомных источниках сигнала и при высокоомных нагрузках.

Общая схема параллельного колебательного контура приведена на рис.10. В приведенной схеме R - активное сопротивление индуктивности, R1 - активное сопротивление конденсатора.

Входным сигналом такого контура может быть только токовый сигнал, поскольку в случае, когда источником сигнала является генератор напряжения, будет происходить шунтирование контура.

Наибольший интерес представляет случай, когда сопротивление R 1 конденсатора С постоянному току равно бесконечности. Схема такого контура приведена на рис. 4.10,б . В этом случае комплексный коэффициент передачи

Комплексный коэффициент передачи параллельного колебательного контура (т.е. общее сопротивление контура) является вещественным на резонансной частоте р, удовлетворяющей условию

где - резонансная частота последовательного колебательного контура.

На резонансной частоте р

Отметим, что на этой частоте токи, протекающие через конденсатор С и катушку индуктивности L , сдвинуты по фазе на, равны по величине и в Q раз превышают ток I вх источника сигнала.

Из-за конечности внутреннего сопротивления R с источника сигнала добротность параллельного контура уменьшается:

Отсюда следует, что резонансные свойства параллельного колебательного контура лучше всего проявляются при источниках сигналов с большим выходным сопротивлением (R с "), т.е. генераторах тока.

Для используемых на практике параллельных колебательных контуров с высокой добротностью активное сопротивление потерь R значительно меньше индуктивного сопротивления L , поэтому для комплексного коэффициента K (j ) будем иметь:

Как следует из этих выражений, резонансная частота высокодобротного параллельного колебательного контура

Импульсная характеристика такого контура

его переходная характеристика

Для идеального параллельного колебательного контура (контура без потерь, т.е. R = 0)

Полоса пропускания колебательных контуров вводится аналогично полосе пропускания RC -цепей, т.е. как область частот, в пределах которой модуль комплексного коэффициента передачи превышает уровень от максимального (при резонансе) значения. При больших добротностях контуров и небольших отклонениях (расстройках) частот относительно резонансной частоты АЧХ последовательного и параллельного колебательных контуров практически совпадают. Это позволяет получить хотя и приближенное, но вполне приемлемое на практике соотношение между полосой пропускания и параметрами контура

Литература

Зайчик М.Ю. и др. Сборник учебно-контрольных задач по теории электрических цепей. - М.: Энергоиздат, 1981.

Борисов Ю.М. Электротехника: учеб. пособие для вузов / Ю.М. Борисов, Д.Н. Липатов, Ю.Н. Зорин. - Изд.3-е, перераб. и доп. ; Гриф МО. - Минск: Высш. шк. А, 2007. - 543 с

Григораш О.В. Электротехника и электроника: учеб. для вузов / О.В. Григораш, Г.А. Султанов, Д.А. Нормов. - Гриф УМО. - Ростов н/Д: Феникс, 2008. - 462 с

Лоторейчук Е.А. Теоретические основы электротехники: учеб. для студ. учреждений сред. проф. образования / Е.А. Лоторейчук. - Гриф МО. - М. : Форум: Инфра-М, 2008. - 316 с.

Федорченко А. А. Электротехника с основами электроники: учеб. для учащ. проф. училищ, лицеев и студ. колледжей / А. А. Федорченко, Ю. Г. Синдеев. - 2-е изд. - М. : Дашков и К°, 2010. - 415 с.

Катаенко Ю. К. Электротехника: учеб. пособие / Ю. К. Катаенко. - М. : Дашков и К° ; Ростов н/Д: Академцентр, 2010. - 287 с.

Москаленко В.В. Электрический привод: Учеб. пособие для сред. проф. образования / В.В. Москаленко. - М. : Мастерство, 2000. - 366 с.

Савилов Г.В. Электротехника и электроника: курс лекций / Г.В. Савилов. - М. : Дашков и К°, 2009. - 322 с.

Размещено на Allbest.ru

Подобные документы

    Знакомство с моделью двухпроводной линии передачи. Характеристика цепей с распределенными параметрами. Рассмотрение способов решения телеграфных уравнений. Особенности линий передачи электрических сигналов. Анализ эквивалентной схемы участка линии.

    презентация , добавлен 20.02.2014

    Анализ свойств цепей, методов их расчета применительно к линейным цепям с постоянными источниками. Доказательство свойств линейных цепей с помощью законов Кирхгофа. Принцип эквивалентного генератора. Метод эквивалентного преобразования электрических схем.

    презентация , добавлен 16.10.2013

    Разветвленная магнитная цепь: понятие и структура, элементы и принципы их взаимодействия. Схема замещения магнитной цепи. Методика расчета магнитных напряжений. Расчет цепей с линейными и нелинейными индуктивными элементами, определение коэффициентов.

    презентация , добавлен 28.10.2013

    Определение операторной функции ARC-фильтра. Расчет амплитудного и фазного спектров реакции. Построение графика функции времени реакции цепи. Определение переходной и импульсной функции фильтра. Реакция цепи на непериодический прямоугольный импульс.

    курсовая работа , добавлен 30.08.2012

    Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.

    курсовая работа , добавлен 18.05.2014

    Формулировка законов Кирхгофа. Расчет цепей с последовательным, параллельным и смешанным соединениями резистивных элементов. Передаточная функция цепи и ее связь с импульсной, переходной и частотными характеристиками цепи. Определение токов в ветвях цепи.

    контрольная работа , добавлен 08.01.2013

    Мгновенные значения величин. Векторная диаграмма токов и топографическая диаграмма напряжений. Расчет показателей ваттметров, напряжения между заданными точками. Анализ переходных процессов в линейных электрических цепях с сосредоточенными параметрами.

    реферат , добавлен 30.08.2012

    Схема замещения электрической цепи и положительные направления токов линий и фаз. Баланс мощностей для рассчитанной фазы. Активная, реактивная и полная мощность 3-х фазной цепи. Соотношения между линейными и фазными величинами в симметричной системе.

    контрольная работа , добавлен 03.04.2009

    Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа , добавлен 09.07.2013

    Понятие и примеры простых резистивных цепей. Методы расчета простых резистивных цепей. Расчет резистивных электрических цепей методом токов ветвей. Метод узловых напряжений. Описание колебания в резистивных цепях линейными алгебраическими уравнениями.

Классический метод анализа процессов в линейных цепях часто оказывается связанным с необходимостью проведения громоздких преобразований.

Альтернативой классическому методу является операторный (операционный) метод. Его сущность состоит в переходе посредством интегрального преобразования над входным сигналом от дифференциального уравнения к вспомогательному алгебраическому (операционному) уравнению. Затем находится решение этого уравнения, из которого с помощью обратного преобразования получают решение исходного дифференциального уравнения.

В качестве интегрального преобразования наиболее часто используют преобразование Лапласа, которое для функции s (t ) дается формулой:

где p - комплексная переменная: . Функция s(t ) называется оригиналом, а функция S (p ) - ее изображением.

Обратный переход от изображения к оригиналу осуществляется с помощью обратного преобразования Лапласа

Выполнив преобразование Лапласа обеих частей уравнения (*), получим:

Отношение изображений Лапласа выходного и входного сигналов носит название передаточной характеристики (операторного коэффициента передачи) линейной системы:

Если передаточная характеристика системы известна, то для нахождения выходного сигнала по заданному входному сигналу необходимо:

· - найти изображение Лапласа входного сигнала;

· - найти изображение Лапласа выходного сигнала по формуле

· - по изображению S вых (p ) найти оригинал (выходной сигнал цепи).

В качестве интегрального преобразования для решения дифференциального уравнения может использоваться также преобразование Фурье, являющееся частным случаем преобразования Лапласа, когда переменная p содержит только мнимую часть. Отметим, что для того чтобы к функции можно было применить преобразование Фурье, она должна быть абсолютно интегрируемой. Это ограничение снимается в случае преобразования Лапласа.

Как известно, прямое преобразование Фурье сигнала s (t ), заданного во временной области, является спектральной плотностью этого сигнала:

Выполнив преобразование Фурье обеих частей уравнения (*), получим:


Отношение изображений Фурье выходного и входного сигналов, т.е. отношение спектральных плотностей выходного и входного сигналов, называется комплексным коэффициентом передачи линейной цепи:

Если комплексный коэффициент передачи линейной системы известен, то нахождение выходного сигнала для заданного входного сигнала производят в следующей последовательности:

· определяют с помощью прямого преобразования Фурье спектральную плотность входного сигнала;

· определяют спектральную плотность выходного сигнала:

· с помощью обратного преобразования Фурье находят выходной сигнал, как функцию времени

Если для входного сигнала существует преобразование Фурье, то комплексный коэффициент передачи может быть получен из передаточной характеристики заменой р на j .

Анализ преобразования сигналов в линейных цепях с использованием комплексного коэффициента передачи называется методом анализа в частотной области (спектральным методом).

На практике К (j ) часто находят методами теории цепей на основании принципиальных схем, не прибегая к составлению дифференциального уравнения. Эти методы базируются на том, что при гармоническом воздействии комплексный коэффициент передачи может быть выражен в виде отношения комплексных амплитуд выходного и входного сигналов

линейный цепь сигнал интегрирующий


Если входной и выходной сигналы являются напряжениями, то K (j ) является безразмерным, если соответственно током и напряжением, то K (j ) характеризует частотную зависимость сопротивления линейной цепи, если напряжением и током, то - частотную зависимость проводимости.

Комплексный коэффициент передачи K (j ) линейной цепи связывает между собой спектры входного и выходного сигналов. Как и любая комплексная функция, он может быть представлен в трех формах (алгебраической, показательной и тригонометрической):

где - зависимость от частоты модуля

Зависимость фазы от частоты.

В общем случае комплексный коэффициент передачи можно изобразить на комплексной плоскости, откладывая по оси действительных величин, - по оси мнимых значений. Полученная при этом кривая называется годографом комплексного коэффициента передачи.

На практике большей частью зависимости К () и k () рассматриваются отдельно. При этом функция К () носит название амплитудно-частотной характеристики (АЧХ), а функция k () - фазо-частотной характеристики (ФЧХ) линейной системы. Подчеркнем, что связь между спектром входного и выходного сигналов существует только в комплексной области.

В нелинейных электрических цепях связь между входным сигналом U Вх. (T ) и выходным сигналом U Вых. (T ) описывается нелинейной функциональной зависимостью

Такую функциональную зависимость можно рассматривать как математическую модель нелинейной цепи.

Обычно нелинейная электрическая цепь представляет совокупность линейных и нелинейных двухполюсников. Для описания свойств нелинейных двухполюсников часто пользуются их вольтамперными характеристиками (ВАХ). Как правило, ВАХ нелинейных элементов получают экспериментально. В результате эксперимента ВАХ нелинейного элемента получают в виде таблицы. Этот способ описания пригоден для анализа нелинейных цепей с помощью ЭВМ.

Для изучения процессов в цепях, содержащих нелинейные элементы, необходимо отобразить ВАХ в математической форме, удобной для расчетов. Для использования аналитических методов анализа требуется подобрать аппроксимирующую функцию, достаточно точно отражающую особенности экспериментально снятой характеристики. Чаще всего используются следующие способы аппроксимации ВАХ нелинейных двухполюсников.

Показательная аппроксимация. Из теории работы p-n перехода следует, что вольт-амперная характеристика полупроводникового диода при u>0 описывается выражением

. (7.3)

Показательную зависимость часто используют при изучении нелинейных цепей, содержащих полупроводниковые приборы. Аппроксимация вполне точна при значениях тока, не превышающих несколько миллиампер. При больших токах экспоненциальная характеристика плавно переходит в прямую линию из-за влияния объемного сопротивления полупроводникового материала.

Степенная аппроксимация. Этот способ основан на разложении нелинейной вольтамперной характеристики в ряд Тейлора, сходящийся в окрестности рабочей точки U 0 :

Здесь коэффициенты …. – некоторые числа, которые можно найти из полученной экспериментально вольтамперной характеристики. Количество членов разложения зависит от требуемой точности расчетов.

Пользоваться степенной аппроксимацией при больших амплитудах сигналов нецелесообразно из-за существенного ухудшения точности.

Кусочно-линейная аппроксимация Применяется в случаях, когда в схеме действуют большие сигналы. Способ основан на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. Например, передаточная характеристика реального транзистора может быть аппроксимирована тремя отрезками прямых, как показано на рис.7.1.

Рис.7.1 .Передаточная характеристика биполярного транзистора

Аппроксимация определяется тремя параметрами: напряжением начала характеристики , крутизной , имеющей размерность проводимости и напряжением насыщения , при котором возрастание тока прекращается. Математическая запись аппроксимированной характеристики такова:

(7.5)

Во всех случаях ставится задача нахождения спектрального состава тока, обусловленного воздействием на нелинейную цепь гармонических напряжений. При кусочно-линейной аппроксимации схемы анализируют методом угла отсечки.

Рассмотрим для примера работу нелинейной цепи при больших сигналах. В качестве нелинейного элемента используем биполярный транзистор, работающий с отсечкой коллекторного тока. Для этого при помощи начального напряжения смещения Е См рабочая точка устанавливается таким образом, чтобы транзистор работал с отсечкой коллекторного тока, и одновременно подадим на базу входной гармонический сигнал.

Рис.7.2. Иллюстрация отсечки тока при больших сигналах

Угол отсечки θ – половина той части периода, в течение которой коллекторный ток не равен нулю, или, другими словами, часть периода от момента достижения коллекторным током максимума до момента, когда ток становится равным нулю – «отсекается».

В соответствии с обозначениями на рис.7.2 коллекторный ток для I > 0 описывается выражением

Разложение этого выражения в ряд Фурье позволяет найти постоянную составляющую I 0 и амплитуды всех гармоник коллекторного тока. Частоты гармоник кратны частоте входного сигнала, а относительные амплитуды гармоник зависят от угла отсечки. Анализ показывает, что для каждого номера гармоники существует оптимальный угол отсечки θ, При котором ее амплитуда максимальна:

. (7.7)

Рис.7.8 . Схема умножения частоты

Подобные схемы (рис.7.8) часто применяются для умножения частоты гармонического сигнала в целое число раз. Настройкой колебательного контура, включенного в коллекторную цепь транзистора, можно выделить нужную гармонику исходного сигнала. Угол отсечки устанавливается, исходя из максимального значения амплитуды заданной гармоники. Относительная амплитуда гармоники уменьшается с ростом ее номера. Поэтому описанный метод применим при коэффициентах умножения N ≤ 4. Применяя многократное умножение частоты, можно на основе одного высокостабильного генератора гармонических колебаний получить набор частот с такой же относительной нестабильностью частоты, как у основного генератора. Все эти частоты кратны частоте входного сигнала.

Свойство нелинейной цепи обогащать спектр, создавая на выходе спектральные составляющие, первоначально отсутствовавшие на входе, ярче всего проявляются, если входной сигнал представляет собой сумму нескольких гармонических сигналов с различными частотами. Рассмотрим случай воздействия на нелинейную цепь суммы двух гармонических колебаний. Вольтамперную характеристику цепи представим многочленом 2-й степени:

. (7.8)

Входное напряжение помимо постоянной составляющей содержит два гармонических колебания с частотами и , амплитуды которых равны и соответственно:

. (7.9)

Такой сигнал называется бигармоническим. Подставив этот сигнал в формулу (7.8), выполнив преобразования и сгруппировав члены, получим спектральное представление тока в нелинейном двухполюснике:

Видно, что в спектре тока присутствуют слагаемые, входящие в спектр входного сигнала, вторые гармоники обоих источников входного сигнала а также гармонические составляющие с частотами ω1 ω2 и ω1 + ω2 . Если степенное разложение вольтамперной характеристики представлено многочленом 3-й степени, спектр тока будет содержать также частоты . В общем случае при воздействии на нелинейную цепь нескольких гармонических сигналов с разными частотами в спектре тока появляются комбинационные частоты

Где – любые целые числа, положительные и отрицательные, включая нуль.

Возникновение комбинационных составляющих в спектре выходного сигнала при нелинейном преобразовании обусловливает ряд важных эффектов, с которыми приходится сталкиваться при построении радиоэлектронных устройств и систем. Так, если один из двух входных сигналов промодулирован по амплитуде, то происходит перенос модуляции с одной несущей частоты на другую. Иногда за счет нелинейного взаимодействия наблюдается усиление или подавление одного сигнала другим.

На основе нелинейных цепей осуществляется детектирование (демодуляция) амплитудно-модулированных (АМ) сигналов в радиоприемниках. Схема амплитудного детектора и принцип его работы поясняются на рис.7.9.

Рис.7.9. Схема амплитудного детектора и форма выходного тока

Нелинейный элемент, вольтамперная характеристика которого аппроксимирована ломаной линией, пропускает только одну (в данном случае положительную) полуволну входного тока. Эта полуволна создает на резисторе импульсы напряжения высокой (несущей) частоты с огибающей, воспроизводящей форму огибающей амплитудно-модулированного сигнала. Спектр напряжения на резисторе содержит частоту несущей , ее гармоники и низкочастотную составляющую, которая примерно вдвое меньше амплитуды импульсов напряжения. Эта составляющая имеет частоту , равную частоте огибающей, т. е. представляет собой продетектированный сигнал. Конденсатор совместно с резистором образует фильтр низких частот. При выполнении условия

(7.12)

В спектре выходного напряжения остается только частота огибающей. При этом также происходит увеличение выходного напряжения за счет того, что при положительной полуволне входного напряжения конденсатор быстро заряжается через малое сопротивление открытого нелинейного элемента почти до амплитудного значения входного напряжения, а при отрицательной полуволне – не успевает разрядиться через большое сопротивление резистора . Приведенное описание работы амплитудного детектора соответствует режиму большого входного сигнала, при котором ВАХ полупроводникового диода аппроксимируется ломаной прямой.

В режиме малого входного сигнала начальный участок ВАХ диода может быть аппроксимирован квадратичной зависимостью. При подаче на такой нелинейный элемент амплитудно-модулированного сигнала, спектр которого содержит несущую и боковые частоты, возникают частоты с суммарной и разностной частотами. Разностная частота представляет собой продетектированный сигнал, а несущая и суммарная частоты не проходят через фильтр низких частот, образованный элементами и .

Обычный прием детектирования частотно-модулированных (ЧМ) колебаний состоит в том, что ЧМ колебание сначала преобразуется в АМ колебание, которое затем детектируется вышеописанным способом. В качестве простейшего преобразователя ЧМ в АМ может служить расстроенный относительно несущей частоты колебательный контур. Принцип преобразования ЧМ сигналов в АМ поясняется на рис.7.10.

Рис.7.10. Преобразование ЧМ в АМ

При отсутствии модуляции рабочая точка находится на скате резонансной кривой контура. При изменении частоты изменяется амплитуда тока в контуре, т. е. происходит преобразование ЧМ в АМ.

Схема преобразователя ЧМ в АМ показана на рис.7.11.

Рис.7.11. Преобразователь ЧМ в АМ

Недостатком такого детектора являются искажения продетектированного сигнала, возникающие из-за нелинейности резонансной кривой колебательного контура. Поэтому на практике применяются симметричные схемы, обладающие лучшими характеристиками. Пример такой схемы приведен на рис.7.12.

Рис.7.12. Детектор ЧМ сигналов

Два контура настраиваются на крайние значения частоты, т. е. на частоты И . Каждый из контуров преобразует ЧМ в АМ, как описано выше. АМ колебания детектируются соответствующими амплитудными детекторами. Низкочастотные напряжения и противоположны по знаку, и с выхода схемы снимается их разность. Характеристика детектора, т. е. зависимость выходного напряжения от частоты, получается путем вычитания двух резонансных кривых и более линейна. Такие детекторы называются дискриминаторами (различителями).