tda pinout. A simple powerful stereo amplifier on a single TDA7297 chip. Scheme. Typical TDA7294 connection diagram from datasheet

This article will discuss a fairly common and popular amplifier chip TDA7294. Let's look at its brief description, technical characteristics, typical connection diagrams and give a diagram of an amplifier with a printed circuit board.

Description of the TDA7294 chip

The TDA7294 chip is a monolithic integrated circuit in a MULTIWATT15 package. It is intended for use as an AB Hi-Fi audio amplifier. Thanks to its wide supply voltage range and high output current, the TDA7294 is capable of delivering high output power into 4 ohm and 8 ohm speaker impedances.

The TDA7294 has low noise, low distortion, good ripple rejection, and can operate from a wide range of supply voltages. The chip has built-in short circuit protection and an overheat shutdown circuit. The built-in Mute function makes it easy to control the amplifier remotely, preventing noise.

This integrated amplifier is easy to use and does not require many external components to function properly.

TDA7294 Specifications

Chip dimensions:

As stated above, chip TDA7294 is produced in the MULTIWATT15 housing and has the following pinout arrangement:

  1. GND (common wire)
  2. Inverting Input
  3. Non Inverting Input
  4. In+Mute
  5. N.C. (not used)
  6. Bootstrap
  7. Stand-by
  8. N.C. (not used)
  9. N.C. (not used)
  10. +Vs (plus power)
  11. Out
  12. -Vs (minus power)

You should pay attention to the fact that the microcircuit body is connected not to the common power line, but to the power supply minus (pin 15)

Typical TDA7294 connection diagram from datasheet

Bridge connection diagram

Bridged connection is the connection of an amplifier to speakers, in which the channels of a stereo amplifier operate in the mode of monoblock power amplifiers. They amplify the same signal, but in antiphase. In this case, the speaker is connected between the two outputs of the amplification channels. Bridge connection allows you to significantly increase the power of the amplifier

In fact, this bridge circuit from the datasheet is nothing more than two simple amplifiers to the outputs to which an audio speaker is connected. This connection circuit can only be used with speaker impedances of 8 Ohms or 16 Ohms. With a 4 ohm speaker, there is a high probability of the chip failing.


Among integrated power amplifiers, the TDA7294 is a direct competitor to the LM3886.

Example of using TDA7294

This is a simple 70 watt amplifier circuit. Capacitors must be rated for at least 50 volts. For normal operation of the circuit, the TDA7294 chip must be installed on a radiator with an area of ​​about 500 cm2. The installation is carried out on a single-sided board made according to .

Printed circuit board and arrangement of elements on it:

Amplifier power supply TDA7294

To power an amplifier with a 4 Ohm load, the power supply must be 27 volts; with a speaker impedance of 8 Ohms, the voltage should already be 35 volts.

The power supply for the TDA7294 amplifier consists of a step-down transformer Tr1 having a secondary winding of 40 volts (50 volts with a load of 8 Ohms) with a tap in the middle or two windings of 20 volts (25 volts with a load of 8 Ohms) with a load current of up to 4 amperes. The diode bridge must meet the following requirements: forward current of at least 20 amperes and reverse voltage of at least 100 volts. The diode bridge can be successfully replaced with four rectifier diodes with the corresponding indicators.

Electrolytic filter capacitors C3 and C4 are designed mainly to remove the peak load of the amplifier and eliminate voltage ripple coming from the rectifier bridge. These capacitors have a capacity of 10,000 microfarads with an operating voltage of at least 50 volts. Non-polar capacitors (film) C1 and C2 can have a capacity of 0.5 to 4 µF with a supply voltage of at least 50 volts.

Voltage distortions should not be allowed; the voltage in both arms of the rectifier must be equal.

(1.2 Mb, downloaded: 4,035)

Amplifier chip TDA2030 is a fairly popular and cheap microcircuit that allows you to build a high-quality amplifier for domestic needs. Can operate from both bipolar and unipolar power sources.

The TDA2030 is a monolithic integrated circuit in a five-pin Pentawatt package.

The microcircuit is intended for the manufacture of low-frequency audio amplifiers of class AB.

Class "A" amplifier– is linear, amplification occurs in the linear section of the current-voltage characteristic. The advantage is good amplification quality and virtually no transient distortion. The disadvantages include not being economical in terms of energy consumption, hence the low efficiency.

Class B amplifier– amplification occurs by active transistors, each operating in switch mode, amplifying its part of the signal half-wave. This class has a high efficiency, but at the same time the level of nonlinear distortion is higher, due to imperfect joining of both half-waves.

Class AB amplifier- average option. Due to the initial displacement, nonlinear distortions of the audio signal are reduced (“docking” is close to perfect), but there is a deterioration in terms of efficiency.

The chip provides 14 watts of output power (d = 0.5%) at 14 V (bipolar) or 28 V (unipolar) supply voltage and load into 4 ohms. It also provides a guaranteed output power of 12/8 watts into a 4/8 ohm load.

The TDA2030 produces high output current and has very low harmonic and crossover distortion.

Harmonic vibrations arise due to distortion of the voltage waveform from an ideal sinusoid. This leads to the fact that, in addition to vibrations of the primary frequency (first harmonic), vibrations of higher harmonics appear in the form of voltage, which are harmonic distortions.

Crosstalk are the cause of the nonlinear input characteristics of transistors operating in mode “B” amplifiers.

Besides, TDA2030 includes an original and patented short circuit protection system consisting of an automatic power dissipation limiting module to keep the operating point of the output transistors within their safe operating range. There is also a standard overheat shutdown circuit.

Technical characteristics of TDA2030

Overall dimensions and pinout of the TDA2030 microcircuit

Typical TDA2030 connection circuit with output power up to 14 watts

The input signal (approximately 0.8 volts) can be an audio signal from the output of a CD/DVD player, radio, MP3 player. A speaker with a coil resistance of 4 ohms must be connected to the output. Variable resistor P1 is designed to change the value of the input audio signal. If it is necessary to amplify a fairly weak signal, for example, a signal from a microphone or from an electric guitar pickup, then in this case it is necessary to use.

A preamplifier is an amplifier for a weak signal, usually located near the source of this signal to prevent all kinds of distortion due to various interference. Used to amplify low-current signals from devices such as microphones and all kinds of pickups.

It is advisable to assemble the power supply on a separate board from the amplifier itself. The power supply circuit is quite simple.

The rectifier transformer can be any transformer that provides a voltage of about 20...22 volts on the secondary winding. For normal operation of the amplifier, it is advisable to install the TDA2030 chip on a heat sink. A small aluminum plate about 3 mm thick with a total surface area of ​​approximately 15 square meters is quite suitable. see. An amplifier assembled without errors does not require adjustment and starts working immediately.

Bridge connection circuit TDA2030

If you need to get more powerful sound amplification, you can assemble an amplifier using a bridge connection circuit TDA2030

The acoustic signal from the output of the DA1 microcircuit is supplied through a divider on resistors R5, R8 to the inverting input of the DA2 microcircuit. This allows you to work in the opposite phase. In this connection, the voltage at the load increases, and, consequently, the output power increases. With a supply voltage of 16 V and a load resistance of 4 Ohms, the output power can be 32 W.

(1.3 Mb, downloaded: 6,787)

AMPLIFIER ON TDA7388

Philips' latest development in the field of integrated UMZCH is called TDA7388 and provides maximum power of 40 watts for each of the four channels. The microcircuit is made in a standard 25-pin package. Judging by the datasheet, the amplifier provides low noise and nonlinear distortion. See microcircuits for details.

The TDA7388 amplifier has output stage protection against short circuit and overcurrent, power reversal and thermal protection. When pin 4 (st-by) is disconnected from the positive of the power supply, the microcircuit is switched to standby mode with low current consumption, and pin 22 is intended to mute the sound.

Audio amplifier circuit on TDA7388

Amplifier specifications TDA7388:

  • Supply voltage: 10-18 V
  • Frequency band: 20-20000 kHz
  • Input voltage: 0.05V
  • Load impedance: 4 ohms
  • Output power 4x40 W
  • Harmonic distortion: 0.15%

When operating this ULF, it should be taken into account that a power of 40 watts per channel will only be obtained with a maximum power supply of 18 V and a Kni level of about 10%. For comfortable listening with Kni down to 0.1%, the power must be reduced to 10-15 watts, which is also not bad, because the total power will still be more than 50 watts. I think this will be quite enough for any room and car interior.

The amplifier microcircuit itself is mounted on an aluminum radiator with an area of ​​50 square cm and all that is required of you is to correctly solder the wires to the contacts of the microcircuit. To obtain maximum power, it is better to power the microcircuit not with standard 14 V, but with 18 volts increased to the maximum rating value. Don't be afraid to burn it - the protection won't let you. If you have problems finding a suitable transformer or power supply, use an ATX power supply for this, as done in

Integrated ASIC TDA7384 is a quadraphonic low frequency power amplifier. The output power, according to the manufacturer, reaches 40 watts per channel. Unfortunately, this is not entirely correct data, unless of course the microcircuit is powered by 12 volts; according to Ohm’s law, in reality it gives 18-20 watts into a 4-ohm load and up to 36 watts into a 2-ohm load.

Microcircuit pinout

Chip TDA7384 It is actively used in car radios and provides very good sound. Inside the microcircuit there is a standard transistor amplifier, the output stages of which operate in AB mode, so the sound quality is quite high quality as long as the rated voltage of the input signal is exceeded. This voltage should not exceed 3 volts, taken from the pre-amplifier of the car radio. By the way, microcircuits TDA7384, TDA7386, TDA7385, TDA7383, TDA7381 They have the same connection diagram and differ only in output power.

On some forums you can read negative reviews about the microcircuit, in particular that the microcircuit has poor performance, gets very hot, the sound is choppy, there is a lot of wheezing and noise. I personally have made many amplifiers on this microcircuit and have not noticed anything like this, you just need to be able to handle microcircuits of this kind correctly.

During soldering, place the microcircuit on the heat sink; this will prevent it from overheating and also saves it from static effects. An important point is that the filtration part is where the further operation of the amplifier depends on the correct power supply filter.

Throttle- designed to partially suppress high-frequency network interference. Unfortunately, we will not be able to completely suppress HF noise with at least one choke, so sometimes two chokes are used. Choose electrolytic capacitors with a large capacity; they play an important role in stabilizing the voltage and suppressing low-frequency interference.

Chip TDA7384 has Standby and Mute modes (sleep and mute modes, respectively). The amplifier also has a Rem function.

Input wires should be shielded; this will prevent the audio signal from deteriorating before entering the microcircuit. In this case, the installation is performed on a circuit board made using .

Currently, a wide range of imported integrated low-frequency amplifiers has become available. Their advantages are satisfactory electrical parameters, the ability to select microcircuits with a given output power and supply voltage, stereophonic or quadraphonic design with the possibility of bridge connection.
To manufacture a structure based on an integral ULF, a minimum of attached parts is required. The use of known-good components ensures high repeatability and, as a rule, no additional tuning is required.
The given typical switching circuits and main parameters of integrated ULFs are designed to facilitate the orientation and selection of the most suitable microcircuit.
For quadraphonic ULFs, the parameters in bridged stereo are not specified.

TDA1010

Supply voltage - 6...24 V
Output power (Un =14.4 V, THD = 10%):
RL=2 Ohm - 6.4 W
RL=4 Ohm - 6.2 W
RL=8 Ohm - 3.4 W
Quiescent current - 31 mA
Connection diagram

TDA1011

Supply voltage - 5.4...20 V
Maximum current consumption - 3 A
Un=16V - 6.5 W
Un=12V - 4.2 W
Un=9V - 2.3 W
Un=6B - 1.0 W
SOI (P=1 W, RL=4 Ohm) - 0.2%
Quiescent current - 14 mA
Connection diagram

TDA1013

Supply voltage - 10...40 V
Output power (THD=10%) - 4.2 W
THD (P=2.5 W, RL=8 Ohm) - 0.15%
Connection diagram

TDA1015

Supply voltage - 3.6...18 V
Output power (RL=4 Ohm, THD=10%):
Un=12V - 4.2 W
Un=9V - 2.3 W
Un=6B - 1.0 W
SOI (P=1 W, RL=4 Ohm) - 0.3%
Quiescent current - 14 mA
Connection diagram

TDA1020

Supply voltage - 6...18 V

RL=2 Ohm - 12 W
RL=4 Ohm - 7 W
RL=8 Ohm - 3.5 W
Quiescent current - 30 mA
Connection diagram

TDA1510

Supply voltage - 6...18 V
Maximum current consumption - 4 A
THD=0.5% - 5.5 W
THD=10% - 7.0 W
Quiescent current - 120 mA
Connection diagram

TDA1514

Supply voltage - ±10...±30 V
Maximum current consumption - 6.4 A
Output power:
Un =±27.5 V, R=8 Ohm - 40 W
Un =±23 V, R=4 Ohm - 48 W
Quiescent current - 56 mA
Connection diagram

TDA1515

Supply voltage - 6...18 V
Maximum current consumption - 4 A
RL=2 Ohm - 9 W
RL=4 Ohm - 5.5 W
RL=2 Ohm - 12 W
RL4 Ohm - 7 W
Quiescent current - 75 mA
Connection diagram

TDA1516

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Un =14.4 V, THD = 0.5%):
RL=2 Ohm - 7.5 W
RL=4 Ohm - 5 W
Output power (Un =14.4 V, THD = 10%):
RL=2 Ohm - 11 W
RL=4 Ohm - 6 W
Quiescent current - 30 mA
Connection diagram

TDA1517

Supply voltage - 6...18 V
Maximum current consumption - 2.5 A
Output power (Un=14.4B RL=4 Ohm):
THD=0.5% - 5 W
THD=10% - 6 W
Quiescent current - 80 mA
Connection diagram

TDA1518

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Un =14.4 V, THD = 0.5%):
RL=2 Ohm - 8.5 W
RL=4 Ohm - 5 W
Output power (Un =14.4 V, THD = 10%):
RL=2 Ohm - 11 W
RL=4 Ohm - 6 W
Quiescent current - 30 mA
Connection diagram

TDA1519

Supply voltage - 6...17.5 V
Maximum current consumption - 4 A
Output power (Up=14.4 V, THD=0.5%):
RL=2 Ohm - 6 W
RL=4 Ohm - 5 W
Output power (Un =14.4 V, THD = 10%):
RL=2 Ohm - 11 W
RL=4 Ohm - 8.5 W
Quiescent current - 80 mA
Connection diagram

TDA1551

Supply voltage -6...18 V
THD=0.5% - 5 W
THD=10% - 6 W
Quiescent current - 160 mA
Connection diagram

TDA1521

Supply voltage - ±7.5...±21 V
Output power (Un=±12 V, RL=8 Ohm):
THD=0.5% - 6 W
THD=10% - 8 W
Quiescent current - 70 mA
Connection diagram

TDA1552

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Un =14.4 V, RL = 4 Ohm):
THD=0.5% - 17 W
THD=10% - 22 W
Quiescent current - 160 mA
Connection diagram

TDA1553

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Up=4.4 V, RL=4 Ohm):
THD=0.5% - 17 W
THD=10% - 22 W
Quiescent current - 160 mA
Connection diagram

TDA1554

Supply voltage - 6...18 V
Maximum current consumption - 4 A
THD=0.5% - 5 W
THD=10% - 6 W
Quiescent current - 160 mA
Connection diagram

TDA2004



Output power (Un=14.4 V, THD=10%):
RL=4 Ohm - 6.5 W
RL=3.2 Ohm - 8.0 W
RL=2 Ohm - 10 W
RL=1.6 Ohm - 11 W
KHI (Un=14.4V, P=4.0 W, RL=4 Ohm) - 0.2%;
Bandwidth (at -3 dB level) - 35...15000 Hz
Quiescent current -<120 мА
Connection diagram

TDA2005

Dual integrated ULF, designed specifically for use in cars and allowing operation with low-impedance loads (up to 1.6 Ohms).
Supply voltage - 8...18 V
Maximum current consumption - 3.5 A
Output power (Up = 14.4 V, THD = 10%):
RL=4 Ohm - 20 W
RL=3.2 Ohm - 22 W
SOI (Uп =14.4 V, Р=15 W, RL=4 Ohm) - 10%
Bandwidth (level -3 dB) - 40...20000 Hz
Quiescent current -<160 мА
Connection diagram

TDA2006

The pin layout matches the pin layout of the TDA2030 chip.
Supply voltage - ±6.0...±15 V
Maximum current consumption - 3 A
Output power (Ep=±12V, THD=10%):
at RL=4 Ohm - 12 W
at RL=8 Ohm - 6...8 W THD (Ep=±12V):
at P=8 W, RL= 4 Ohm - 0.2%
at P=4 W, RL= 8 Ohm - 0.1%
Bandwidth (at -3 dB level) - 20...100000 Hz
Consumption current:
at P=12 W, RL=4 Ohm - 850 mA
at P=8 W, RL=8 Ohm - 500 mA
Connection diagram

TDA2007

Dual integrated ULF with single-row pin arrangement, specially designed for use in television and portable radio receivers.
Supply voltage - +6...+26 V
Quiescent current (Ep=+18 V) - 50...90 mA
Output power (THD=0.5%):
at Ep=+18 V, RL=4 Ohm - 6 W
at Ep=+22 V, RL=8 Ohm - 8 W
SOI:
at Ep=+18 V P=3 W, RL=4 Ohm - 0.1%
at Ep=+22 V, P=3 W, RL=8 Ohm - 0.05%
Bandwidth (at -3 dB level) - 40...80000 Hz
Connection diagram

TDA2008

Integrated ULF, designed to operate on low-impedance loads, providing high output current, very low harmonic content and intermodulation distortion.
Supply voltage - +10...+28 V
Quiescent current (Ep=+18 V) - 65...115 mA
Output power (Ep=+18V, THD=10%):
at RL=4 Ohm - 10...12 W
at RL=8 Ohm - 8 W
SOI (Ep= +18 V):
at P=6 W, RL=4 Ohm - 1%
at P=4 W, RL=8 Ohm - 1%
Maximum current consumption - 3 A
Connection diagram

TDA2009

Dual integrated ULF, designed for use in high-quality music centers.
Supply voltage - +8...+28 V
Quiescent current (Ep=+18 V) - 60...120 mA
Output power (Ep=+24 V, THD=1%):
at RL=4 Ohm - 12.5 W
at RL=8 Ohm - 7 W
Output power (Ep=+18 V, THD=1%):
at RL=4 Ohm - 7 W
at RL=8 Ohm - 4 W
SOI:
at Ep= +24 V, P=7 W, RL=4 Ohm - 0.2%
at Ep= +24 V, P=3.5 W, RL=8 Ohm - 0.1%
at Ep= +18 V, P=5 W, RL=4 Ohm - 0.2%
at Ep= +18 V, P=2.5 W, RL=8 Ohm - 0.1%
Maximum current consumption - 3.5 A
Connection diagram

TDA2030

Integrated ULF, providing high output current, low harmonic content and intermodulation distortion.
Supply voltage - ±6...±18 V
Quiescent current (Ep=±14 V) - 40...60 mA
Output power (Ep=±14 V, THD = 0.5%):
at RL=4 Ohm - 12...14 W
at RL=8 Ohm - 8...9 W
SOI (Ep=±12V):
at P=12 W, RL=4 Ohm - 0.5%
at P=8 W, RL=8 Ohm - 0.5%
Bandwidth (at -3 dB level) - 10...140000 Hz
Consumption current:
at P=14 W, RL=4 Ohm - 900 mA
at P=8 W, RL=8 Ohm - 500 mA
Connection diagram

TDA2040

Integrated ULF, providing high output current, low harmonic content and intermodulation distortion.
Supply voltage - ±2.5...±20 V
Quiescent current (Ep=±4.5...±14 V) - mA 30...100 mA
Output power (Ep=±16 V, THD = 0.5%):
at RL=4 Ohm - 20...22 W
at RL=8 Ohm - 12 W
THD (Ep=±12V, P=10 W, RL = 4 Ohm) - 0.08%
Maximum current consumption - 4 A
Connection diagram

TDA2050

Integrated ULF, providing high output power, low harmonic content and intermodulation distortion. Designed to work in Hi-Fi stereo systems and high-end TVs.
Supply voltage - ±4.5...±25 V
Quiescent current (Ep=±4.5...±25 V) - 30...90 mA
Output power (Ep=±18, RL = 4 Ohm, THD = 0.5%) - 24...28 W
SOI (Ep=±18V, P=24Wt, RL=4 Ohm) - 0.03...0.5%
Bandwidth (at -3 dB level) - 20...80000 Hz
Maximum current consumption - 5 A
Connection diagram

TDA2051

Integrated ULF, which has a small number of external elements and provides low harmonic content and intermodulation distortion. The output stage operates in class AB, which allows for greater output power.
Output power:
at Ep=±18 V, RL=4 Ohm, THD=10% - 40 W
at Ep=±22 V, RL=8 Ohm, THD=10% - 33 W
Connection diagram

TDA2052

Integrated ULF, the output stage of which operates in class AB. Accepts a wide range of supply voltages and has a high output current. Designed for use in television and radio receivers.
Supply voltage - ±6...±25 V
Quiescent current (En = ±22 V) - 70 mA
Output power (Ep = ±22 V, THD = 10%):
at RL=8 Ohm - 22 W
at RL=4 Ohm - 40 W
Output power (En = 22 V, THD = 1%):
at RL=8 Ohm - 17 W
at RL=4 Ohm - 32 W
SOI (with a passband at the level of -3 dB 100... 15000 Hz and Pout = 0.1... 20 W):
at RL=4 Ohm -<0,7 %
at RL=8 Ohm -<0,5 %
Connection diagram

TDA2611

Integrated ULF designed for use in household equipment.
Supply voltage - 6...35 V
Quiescent current (Ep=18 V) - 25 mA
Maximum current consumption - 1.5 A
Output power (THD=10%): at Ep=18 V, RL=8 Ohm - 4 W
at Ep=12V, RL=8 0m - 1.7 W
at Ep=8.3 V, RL=8 Ohm - 0.65 W
at Ep=20 V, RL=8 Ohm - 6 W
at Ep=25 V, RL=15 Ohm - 5 W
THD (at Pout=2 W) - 1%
Bandwidth - >15 kHz
Connection diagram

TDA2613


SOI:
(Ep=24 V, RL=8 Ohm, Pout=6 W) - 0.5%
(En=24 V, RL=8 Ohm, Pout=8 W) - 10%
Quiescent current (Ep=24 V) - 35 mA
Connection diagram

TDA2614

Integrated ULF, designed for use in household equipment (television and radio receivers).
Supply voltage - 15...42 V
Maximum current consumption - 2.2 A
Quiescent current (Ep=24 V) - 35 mA
SOI:
(Ep=24 V, RL=8 Ohm, Pout=6.5 W) - 0.5%
(Ep=24 V, RL=8 Ohm, Pout=8.5 W) - 10%
Bandwidth (level -3 dB) - 30...20000 Hz
Connection diagram

TDA2615

Dual ULF, designed for use in stereo radios or televisions.
Supply voltage - ±7.5...21 V
Maximum current consumption - 2.2 A
Quiescent current (Ep=7.5...21 V) - 18...70 mA
Output power (Ep=±12 V, RL=8 Ohm):
THD=0.5% - 6 W
THD=10% - 8 W
Bandwidth (at level -3 dB and Pout = 4 W) - 20...20000 Hz
Connection diagram

TDA2822

Dual ULF, designed for use in portable radios and television receivers.

Quiescent current (Ep=6 V) - 12 mA
Output power (THD=10%, RL=4 Ohm):
Ep=9V - 1.7 W
Ep=6V - 0.65 W
Ep=4.5V - 0.32 W
Connection diagram

TDA7052

ULF designed for use in battery-powered wearable audio devices.
Supply voltage - 3...15V
Maximum current consumption - 1.5A
Quiescent current (E p = 6 V) -<8мА
Output power (Ep = 6 V, R L = 8 Ohm, THD = 10%) - 1.2 W

Connection diagram

TDA7053

Dual ULF, designed for use in wearable audio devices, but can also be used in any other equipment.
Supply voltage - 6...18 V
Maximum current consumption - 1.5 A
Quiescent current (E p = 6 V, R L = 8 Ohm) -<16 mA
Output power (E p = 6 V, RL = 8 Ohm, THD = 10%) - 1.2 W
SOI (E p = 9 V, R L = 8 Ohm, Pout = 0.1 W) - 0.2%
Operating frequency range - 20...20000 Hz
Connection diagram

TDA2824

Dual ULF designed for use in portable radio and television receivers
Supply voltage - 3...15 V
Maximum current consumption - 1.5 A
Quiescent current (Ep=6 V) - 12 mA
Output power (THD=10%, RL=4 Ohm)
Ep=9 V - 1.7 W
Ep=6 V - 0.65 W
Ep=4.5 V - 0.32 W
THD (Ep=9 V, RL=8 Ohm, Pout=0.5 W) - 0.2%
Connection diagram

TDA7231

ULF with a wide range of supply voltages, designed for use in portable radios, cassette recorders, etc.
Supply voltage - 1.8...16 V
Quiescent current (Ep=6 V) - 9 mA
Output power (THD=10%):
En=12B, RL=6 Ohm - 1.8 W
En=9B, RL=4 Ohm - 1.6 W
Ep=6 V, RL=8 Ohm - 0.4 W
Ep=6 V, RL=4 Ohm - 0.7 W
Ep=3 V, RL=4 Ohm - 0.11 W
Ep=3 V, RL=8 Ohm - 0.07 W
THD (Ep=6 V, RL=8 Ohm, Pout=0.2 W) - 0.3%
Connection diagram

TDA7235

ULF with a wide range of supply voltages, designed for use in portable radio and television receivers, cassette recorders, etc.
Supply voltage - 1.8...24 V
Maximum current consumption - 1.0 A
Quiescent current (Ep=12 V) - 10 mA
Output power (THD=10%):
Ep=9 V, RL=4 Ohm - 1.6 W
Ep=12 V, RL=8 Ohm - 1.8 W
Ep=15 V, RL=16 Ohm - 1.8 W
Ep=20 V, RL=32 Ohm - 1.6 W
THD (Ep=12V, RL=8 Ohm, Pout=0.5 W) - 1.0%
Connection diagram

TDA7240



Quiescent current (Ep=14.4 V) - 120 mA
RL=4 Ohm - 20 W
RL=8 Ohm - 12 W
SOI:
(Ep=14.4 V, RL=8 Ohm, Pout=12W) - 0.05%
Connection diagram

TDA7241

Bridged ULF, designed for use in car radios. It has protection against short circuits in the load, as well as overheating.
Maximum supply voltage - 18 V
Maximum current consumption - 4.5 A
Quiescent current (Ep=14.4 V) - 80 mA
Output power (Ep=14.4 V, THD=10%):
RL=2 Ohm - 26 W
RL=4 Ohm - 20 W
RL=8 Ohm - 12 W
SOI:
(Ep=14.4 V, RL=4 Ohm, Pout=12 W) - 0.1%
(Ep=14.4 V, RL=8 Ohm, Pout=6 W) - 0.05%
Bandwidth level -3 dB (RL=4 Ohm, Pout=15 W) - 30...25000 Hz
Connection diagram

TDA1555Q

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Up = 14.4 V. RL = 4 Ohm):
- THD=0.5% - 5 W
- THD=10% - 6 W Quiescent current - 160 mA
Connection diagram

TDA1557Q

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Up = 14.4 V, RL = 4 Ohm):
- THD=0.5% - 17 W
- THD=10% - 22 W
Quiescent current, mA 80
Connection diagram

TDA1556Q

Supply voltage -6...18 V
Maximum current consumption -4 A
Output power: (Up=14.4 V, RL=4 Ohm):
- THD=0.5%, - 17 W
- THD=10% - 22 W
Quiescent current - 160 mA
Connection diagram

TDA1558Q

Supply voltage - 6..18 V
Maximum current consumption - 4 A
Output power (Up=14 V, RL=4 Ohm):
- THD=0.6% - 5 W
- THD=10% - 6 W
Quiescent current - 80 mA
Connection diagram

TDA1561

Supply voltage - 6...18 V
Maximum current consumption - 4 A
Output power (Up=14V, RL=4 Ohm):
- THD=0.5% - 18 W
- THD=10% - 23 W
Quiescent current - 150 mA
Connection diagram

TDA1904

Supply voltage - 4...20 V
Maximum current consumption - 2 A
Output power (RL=4 Ohm, THD=10%):
- Up=14 V - 4 W
- Up=12V - 3.1 W
- Up=9 V - 1.8 W
- Up=6 V - 0.7 W
SOI (Up=9 V, P<1,2 Вт, RL=4 Ом) - 0,3 %
Quiescent current - 8...18 mA
Connection diagram

TDA1905

Supply voltage - 4...30 V
Maximum current consumption - 2.5 A
Output power (THD=10%)
- Up=24 V (RL=16 Ohm) - 5.3 W
- Up=18V (RL=8 Ohm) - 5.5 W
- Up=14 V (RL=4 Ohm) - 5.5 W
- Up=9 V (RL=4 Ohm) - 2.5 W
SOI (Up=14 V, P<3,0 Вт, RL=4 Ом) - 0,1 %
Quiescent current -<35 мА
Connection diagram

TDA1910

Supply voltage - 8...30 V
Maximum current consumption - 3 A
Output power (THD=10%):
- Up=24 V (RL=8 Ohm) - 10 W
- Up=24 V (RL=4 Ohm) - 17.5 W
- Up=18 V (RL=4 Ohm) - 9.5 W
SOI (Up=24 V, P<10,0 Вт, RL=4 Ом) - 0,2 %
Quiescent current -<35 мА
Connection diagram

TDA2003

Supply voltage - 8...18 V
Maximum current consumption - 3.5 A
Output power (Up=14V, THD=10%):
- RL=4.0 Ohm - 6 W
- RL=3.2 Ohm - 7.5 W
- RL=2.0 Ohm - 10 W
- RL=1.6 Ohm - 12 W
SOI (Up=14.4 V, P<4,5 Вт, RL=4 Ом) - 0,15 %
Quiescent current -<50 мА
Connection diagram

TDA7056

ULF designed for use in portable radio and television receivers.
Supply voltage - 4.5...16 V Maximum current consumption - 1.5 A
Quiescent current (E p = 12 V, R = 16 Ohm) -<16 мА
Output power (E P = 12 V, R L = 16 Ohm, THD = 10%) - 3.4 W
THD (E P = 12 V, R L = 16 Ohm, Pout = 0.5 W) - 1%
Operating frequency range - 20...20000 Hz
Connection diagram

TDA7245

ULF designed for use in wearable audio devices, but can also be used in any other equipment.
Supply voltage - 12...30 V
Maximum current consumption - 3.0 A
Quiescent current (E p = 28 V) -<35 мА
Output power (THD = 1%):
-E p = 14 V, R L = 4 Ohm - 4 W
-E P = 18 V, R L = 8 Ohm - 4 W
Output power (THD = 10%):
-E P = 14 V, R L = 4 Ohm - 5 W
-E P = 18 V, R L = 8 Ohm - 5 W
SOI,%
-E P = 14 V, R L = 4 Ohm, Pout<3,0 - 0,5 Вт
-E P = 18 V, R L = 8 Ohm, Pout<3,5 - 0,5 Вт
-E P = 22 V, RL = 16 Ohm, Pout<3,0 - 0.4 Вт
Bandwidth by level
-ZdB(E =14 V, PL = 4 Ohm, Pout = 1 W) - 50...40000 Hz

TEA0675

Two-channel Dolby B noise suppressor designed for automotive applications. Contains pre-amplifiers, an electronically controlled equalizer, and an electronic pause detection device for the Automatic Music Search (AMS) scanning mode. Structurally, it is carried out in SDIP24 and SO24 housings.
Supply voltage, 7.6,..12 V
Current consumption, 26...31 mA
Ratio (signal+noise)/signal, 78...84 dB
Harmonic distortion factor:
at a frequency of 1 kHz, 0.08...0.15%
at a frequency of 10 kHz, 0.15...0.3%
Output impedance, 10 kOhm
Voltage gain, 29...31 dB

TEA0678

Two-channel integrated Dolby B noise suppressor designed for use in car audio equipment. Includes pre-amplifier stages, electronically controlled equalizer, electronic signal source switcher, Automatic Music Search (AMS) system.
Available in SDIP32 and SO32 packages.
Current consumption, 28 mA
Preamp gain (at 1 kHz), 31 dB
Harmonic distortion
< 0,15 %
at a frequency of 1 kHz at Uout=6 dB,< 0,3 %
Noise voltage, normalized to the input, in the frequency range 20...20000 Hz at Rist=0, 1.4 µV

TEA0679

Two-channel integrated amplifier with Dolby B noise reduction system, designed for use in various car audio equipment. Includes pre-amplification stages, an electronically controlled equalizer, an electronic signal source switch, and an Automatic Music Search (AMS) system. The main IC adjustments are controlled via the I2C bus
Available in SO32 housing.
Supply voltage, 7.6...12 V
Current consumption, 40 mA
Harmonic distortion
at a frequency of 1 kHz at Uout=0 dB,< 0,15 %
at a frequency of 1 kHz at Uout=10 dB,< 0,3 %
Crosstalk attenuation between channels (Uout=10 dB, at a frequency of 1 kHz), 63 dB
Signal+noise/noise ratio, 84 dB

TDA0677

Dual pre-amplifier-equalizer designed for use in car radios. Includes a preamplifier and a corrector amplifier with an electronic time constant switch. Also contains an electronic input switch.
The IC is manufactured in the SOT137A package.
Supply voltage, 7.6.,.12 V
Current consumption, 23...26 mA
Signal+noise/noise ratio, 68...74 dB
Harmonic distortion:
at a frequency of 1 kHz at Uout = 0 dB, 0.04...0.1%
at a frequency of 10 kHz at Uout = 6 dB, 0.08...0.15%
Output impedance, 80... 100 Ohm
Gain:
at a frequency of 400 Hz, 104...110 dB
at a frequency of 10 kHz, 80..86 dB

TEA6360

Two-channel five-band equalizer, controlled via 12C bus, designed for use in car radios, televisions, and music centers.
Manufactured in SOT232 and SOT238 packages.
Supply voltage, 7... 13.2 V
Current consumption, 24.5 mA
Input voltage, 2.1 V
Output voltage, 1 V
Reproducible frequency range at level -1dB, 0...20000 Hz
Nonlinear distortion coefficient in the frequency range 20...12500 Hz and output voltage 1.1 V, 0.2...0.5%
Transfer coefficient, 0.5...0 dB
Operating temperature range, -40...+80 C

TDA1074A

Designed for use in stereo amplifiers as a two-channel tone control (low and mid frequencies) and sound. The chip includes two pairs of electronic potentiometers with eight inputs and four separate output amplifiers. Each potentiometric pair is adjusted individually by applying constant voltage to the corresponding terminals.
The IC is manufactured in SOT102, SOT102-1 packages.
Maximum supply voltage, 23 V
Current consumption (no load), 14...30 mA
Gain, 0 dB
Harmonic distortion:
at a frequency of 1 kHz at Uout = 30 mV, 0.002%
at a frequency of 1 kHz at Uout = 5 V, 0.015...1%
Output noise voltage in the frequency range 20...20000 Hz, 75 µV
Interchannel isolation in the frequency range 20...20000 Hz, 80 dB
Maximum power dissipation, 800 mW
Operating temperature range, -30...+80°С

TEA5710

A functionally complete IC that performs the functions of an AM and FM receiver. Contains all the necessary stages: from a high-frequency amplifier to an AM/FM detector and a low-frequency amplifier. It is characterized by high sensitivity and low current consumption. Used in portable AM/FM receivers, radio timers, radio headphones. The IC is manufactured in the SOT234AG (SOT137A) package.
Supply voltage, 2..,12 V
Consumption current:
in AM mode, 5.6...9.9 mA
in FM mode, 7.3...11.2 mA
Sensitivity:
in AM mode, 1.6 mV/m
in FM mode at signal-to-noise ratio 26 dB, 2.0 µV
Harmonic distortion:
in AM mode, 0.8..2.0%
in FM mode, 0.3...0.8%
Low frequency output voltage, 36...70 mV